kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Privacy-Preserving Alternating Direction Method of Multipliers
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

As machine learning models affect our lives more strongly every day, developingmethods to train these models becomes paramount. In our paper, we focus on the problem ofminimizing a sum of functions, which lies at the heart of most - if not all - of these trainingmethods. This problem was formulated in terms of a decentralized consensus optimization, with theterms of the sum belonging to different agents. We examined the efficency and privacy-preservingproperties of methods to solve this problem, as well as conducted numerical experiments on severalvariations of the I-ADMM algorithm. Our results show that utilizing encryption is inefficientcompared to PI-ADMM1, while PI-ADMM1 converges at the same speed as I-ADMM.

Abstract [sv]

Medan maskininlärningsmodellers påver-kan på våra liv växer varje dag blirutvecklandet av tränings-metoder för dessa modeller av stor vikt. I vårat projekt fokuserar vi påproblemet att minimisera en summa av funktioner, vilket är en nyckeldel av mångaträningsmetoder. Detta problem var formulerat i termer av ett decentraliserat konsensusoptimeringsproblem där de olika termerna i summan är kända enbart av olika agenter. Viundersökte effektiviteten och integriteten av lösningsmetoder, samt utförde numeriska experimentpå flera variationer av I-ADMM algoritmen. Våra resultat visade att kryptering var ineffektivtjämfört med PI-ADMM1, medan PI-ADMM1 konvergerar med samma hastighet som I-ADMM.

Place, publisher, year, edition, pages
2023. , p. 579-584
Series
TRITA-EECS-EX ; 2023:186
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-341774OAI: oai:DiVA.org:kth-341774DiVA, id: diva2:1823470
Supervisors
Examiners
Projects
Kandidatexjobb i elektroteknik 2023, KTH, StockholmAvailable from: 2024-01-02 Created: 2024-01-02

Open Access in DiVA

fulltext(211487 kB)297 downloads
File information
File name FULLTEXT01.pdfFile size 211487 kBChecksum SHA-512
69786101c351a58f7bd524c3aeee40c661028b577366c4a725033372b88c624c87c2183b6acca2d3d43bbd2bb2f3942326c69263e70c99cf1db027ce9c4e9ae2
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 297 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 160 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf