kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Machine Learning Model for Localization in an Urban Environment
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

The indoor localization problem has seen great improvements during the last tenyears and today it is possible to determine the location of electronic devices, such assmartphones, with centimeter precision. The aim of this project is to apply similar localizationmethods on multichannel antenna data gathered outdoors in an urban environment andanalyze the viability of this approach. Specifically, machine learning models are created andtested. We also answer the question if this method can be an alternative to the GPS. Themodels utilize the received gain, channel impulse response and power delay profiles and putthis data through different kNN-regression models. To measure the results, both accuracyand computational time are taken into consideration. Through this method, we producemodels that are highly accurate with longer computational times as well as less accuratemodels that are more computationally efficient. This method is viable but may becomplicated to implement on a bigger scale, for example as a GPS alternative.

Abstract [sv]

Förmågan att lokalisera datorenheter, såsom mobiltelefoner, inomhus hargjort stora framsteg under de senaste tio åren och idag är det möjligt medcentimeterprecision. Målet för det här projektet är att applicera liknande lokaliseringsmetoderpå flerkanalsantenndata som insamlats utomhus i stadsmiljö och analysera rimligheten avdetta tillvägagångssätt. Mer specifikt framställs och prövas maskininlärningsmodeller. Visvarar också på frågan om dessa metoder kan vara ett alternativ till gps. Modellernaanvänder den mottagna förstärkningen, impulssvaret och effektprofilen övertidsfördröjningen mellan sända signaler (Power delay profile) och implementerar datat i olikakNN-regressionsmodeller. För att bedöma resultatet tas hänsyn till både noggrannhet ochberäkningstid. Med den här metoden producerar vi modeller som är mycket noggranna medlängre beräkningstider samt mindre noggranna modeller som är mer beräkningseffektiva.Metoden är genomförbar men kan vara komplicerad att implementera i större skala, som tillexempel ett gps-alternativ.

Place, publisher, year, edition, pages
2023. , p. 593-600
Series
TRITA-EECS-EX ; 2023:188
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-341777OAI: oai:DiVA.org:kth-341777DiVA, id: diva2:1823476
Supervisors
Examiners
Projects
Kandidatexjobb i elektroteknik 2023, KTH, StockholmAvailable from: 2024-01-02 Created: 2024-01-02

Open Access in DiVA

fulltext(211487 kB)311 downloads
File information
File name FULLTEXT01.pdfFile size 211487 kBChecksum SHA-512
69786101c351a58f7bd524c3aeee40c661028b577366c4a725033372b88c624c87c2183b6acca2d3d43bbd2bb2f3942326c69263e70c99cf1db027ce9c4e9ae2
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 311 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 213 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf