kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modelling Long Term Memory in the Bayesian Confidence Neural Network Model
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Memory is a fascinating and complex part of human life. Understanding memory and simulating itthrough modelling can help society take steps towards understanding health issues such asAlzheimer's, dementia and amnesia. To explore aspects of the human memory, neuralcomputational models have proven to be a useful tool which has been utilised for this study. Thegoal of this study was to simulate and explore the impact of neuromodulation on memory recall in asimplistic neural network based on the Bayesian Confidence Propagation Neural Network (BCPNN)model and subsequently test its recall capabilities. The BCPNN is a probabilistic artificial neuralnetwork inspired by Bayes' theorem. Training was carried out for the network using suitablepatterns which would represent the memory acquired through a lifetime and the network's ability torecall the patterns it was presented with was tested. The recall results were graphed to constructthe simulated memory curve.

Abstract [sv]

Minnet är en fascinerande och komplex del av det mänskliga livet. Att förstå minnet med simuleringmed hjälp av modellering kan hjälpa samhället få en djupare förståelse för hälsoproblem såsomAlzheimers sjukdom, demens och amnesi. För att utforska olika aspekter av det mänskliga minnethar neurala beräkningsmodeller visat sig vara ett användbart verktyg och har för den anledningenanvänts i den här studien. Målet med studien var att utforska effekten neuromodulering har påminneshämtning i ett neuralt nätverk baserat på Bayesian Confidence Propagation Neural Network(BCPNN) och därefter testa dess återkallning förmåga. BCPNN är ett probabilistiskt artificiellt neuraltnätverk inspirerat av Bayes teorem. Träning för nätverket utfördes genom att använda passandemönster som representerar minne förvarat över en livstid. Därefter testades nätverkets förmåga attåterkalla dessa minnen. Slutligen användes resultatet av det återkallade minnet för att konstruera engraf som representerar den simulerade minneskurvan.

Place, publisher, year, edition, pages
2023.
Series
TRITA-EECS-EX ; 2023:195
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-341785OAI: oai:DiVA.org:kth-341785DiVA, id: diva2:1823496
Supervisors
Examiners
Projects
Kandidatexjobb i elektroteknik 2023, KTH, StockholmAvailable from: 2024-01-02 Created: 2024-01-02

Open Access in DiVA

fulltext(211487 kB)366 downloads
File information
File name FULLTEXT01.pdfFile size 211487 kBChecksum SHA-512
69786101c351a58f7bd524c3aeee40c661028b577366c4a725033372b88c624c87c2183b6acca2d3d43bbd2bb2f3942326c69263e70c99cf1db027ce9c4e9ae2
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 366 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 244 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf