kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Utilizing logistic regression to apply the ELO system in forecasting Premier League odds
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematical Statistics.
2023 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Användning av logistisk regression för att tillämpa ELO-systemet vid prognostisering av Premier League-odds (English)
Abstract [en]

This thesis provides insights into the creation of a model for predicting odds in the Premier League. It illustrates how the ELO system and historical odds, in combination with Monte Carlo simulations, can be implemented through logistic regression to predict odds in an unbiased way. The findings are that the model performs generally well, but significantly worse at the beginning and end of the Premier League seasons. For further improvements, it is most likely necessary to factor in variables not available in the current model. Such factors could for example be incentives, injuries, or changes in the squad, all not being accounted for by the model in this case.

Abstract [sv]

Detta examensarbete ger insikter om skapandet av en modell för att förutsäga oddsen i Premier League. Den visar hur ELO-systemet och historiska odds, i kombination med Monte Carlo-simuleringar, kan implementeras genom logistisk regression för att förutsäga oddsen på ett opartiskt sätt. Resultaten visar att modellen generellt sett fungerar bra, men betydligt sämre i början och slutet av Premier League-säsongerna. För ytterligare förbättringar är det troligtvis nödvändigt att ta hänsyn till variabler som inte är tillgängliga i den nuvarande modellen. Sådana faktorer kan till exempel vara incitament, skador eller förändringar i truppen, som alla inte tas hänsyn till i modellen i detta fall.

Place, publisher, year, edition, pages
2023.
Series
TRITA-SCI-GRU ; 2023-221
Keywords [en]
Premier League, ELO system, Historical odds, Logistic regression, Unbiased prediction
Keywords [sv]
Premier League, ELO systemet, Historiska odds, Logistisk regression, Opartiska prediktioner
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:kth:diva-341852OAI: oai:DiVA.org:kth-341852DiVA, id: diva2:1823776
Subject / course
Applied Mathematics and Industrial Economics
Educational program
Master of Science in Engineering - Industrial Engineering and Management
Supervisors
Examiners
Available from: 2024-01-03 Created: 2024-01-03 Last updated: 2024-01-03Bibliographically approved

Open Access in DiVA

fulltext(1476 kB)304 downloads
File information
File name FULLTEXT01.pdfFile size 1476 kBChecksum SHA-512
fc70161f7eb19ac3d49250121686bb6311f3dd3472fe94bc58be75550ea96d1a46aa5d3a010ffb4f8025181484b4aa47c2388576586fda63d855cffc0e60a655
Type fulltextMimetype application/pdf

By organisation
Mathematical Statistics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 304 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 808 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf