kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Computational Models of Spatial Transcriptomes
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab. (Joakim Lundeberg)ORCID iD: 0000-0002-5108-4481
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Spatial biology is a rapidly growing field that has seen tremendous progress over the last decade. We are now able to measure how the morphology, genome, transcriptome, and proteome of a tissue vary across space. Datasets generated by spatial technologies reflect the complexity of the systems they measure: They are multi-modal, high-dimensional, and layer an intricate web of dependencies between biological compartments at different length scales. To add to this complexity, measurements are often sparse and noisy, obfuscating the underlying biological signal and making the data difficult to interpret. In this thesis, we describe how data from spatial biology experiments can be analyzed with methods from deep learning and generative modeling to accelerate biological discovery. The thesis is divided into two parts. The first part provides an introduction to the fields of deep learning and spatial biology, and how the two can be combined to model spatial biology data. The second part consists of four papers describing methods that we have developed for this purpose. Paper I presents a method for inferring spatial gene expression from hematoxylin and eosin stains. The proposed method offers a data-driven approach to analyzing histopathology images without relying on expert annotations and could be a valuable tool for cancer screening and diagnosis in the clinics. Paper II introduces a method for jointly modeling spatial gene expression with histology images. We show that the method can predict super-resolved gene expression and transcriptionally characterize small-scale anatomical structures. Paper III proposes a method for learning flexible Markov kernels to model continuous and discrete data distributions. We demonstrate the method on various image synthesis tasks, including unconditional image generation and inpainting. Paper IV leverages the techniques introduced in Paper III to integrate data from different spatial biology experiments. The proposed method can be used for data imputation, super resolution, and cross-modality data transfer.

Abstract [sv]

Spatial biologi är ett snabbt växande forskningsområde som har sett en hög utvecklingstakt under det senaste decenniet. Vi kan idag mäta hur en vävnads morfologi, genom, transkriptom och proteom varierar i rummet. Dataset skapade av spatiala teknologier återspeglar komplexiteten i de system de mäter: De är multimodala, högdimensionella och är uppbyggda av ett intrikat nätverk av beroenden mellan biologiska strukturer som existerar på olika längdskalor. Som om denna komplexitet inte var nog, är mätningarna ofta både glesa och brusiga, vilket försvårar tolkningen av den underliggande biologiska signalen. I denna avhandling beskriver vi hur data från experiment inom spatial biologi kan analyseras med hjälp av djupinlärning och generativ modellering för att accelerera biologiska upptäckter. Avhandlingen är uppdelad i två delar. Den första delen ger en introduktion till fälten djupinlärning och spatial biologi, och hur dessa kan kombineras för att modellera data inom spatial biologi. Den andra delen består av fyra artiklar som beskriver metoder som vi har utvecklat för detta ändamål. Artikel I presenterar en metod för att skatta spatialt genuttryck från hematoxylin-eosin-färgningar. Den föreslagna metoden erbjuder ett datadrivet tillvägagångssätt för att analysera histopatologi-bilder utan användning av expertannoteringar och kan utgöra ett värdefullt verktyg för cancerscreening och diagnos i kliniken. Artikel II introducerar en metod för sammodellering av spatialt genuttryck och histologibilder. Vi visar att metoden kan användas för att predicera superupplöst genuttryck och transkriptionellt karakterisera småskaliga anatomiska strukturer. Artikel III beskriver en metod för modellering av kontinuerliga och diskreta datafördelningar med flexibla Markovkärnor. Vi demonstrerar metoden på olika bildgenereringsuppgifter, inklusive obetingad datagenerering och inpainting. Artikel IV utnyttjar teknikerna från Artikel III för att integrera data från olika experiment inom spatial biologi. Den föreslagna metoden kan användas för imputering, superupplösning och dataöverföring mellan olika modaliteter.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. , p. 66
Series
TRITA-CBH-FOU ; 2024:1
National Category
Bioinformatics (Computational Biology)
Research subject
Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-341968ISBN: 978-91-8040-820-2 (print)OAI: oai:DiVA.org:kth-341968DiVA, id: diva2:1825134
Public defence
2024-01-31, Air & Fire, Tomtebodavägen 23A, via Zoom: https://kth-se.zoom.us/j/68950542171, Solna, 10:00 (English)
Opponent
Supervisors
Note

QC 2024-01-09

Available from: 2024-01-09 Created: 2024-01-08 Last updated: 2024-01-30Bibliographically approved
List of papers
1. Integrating spatial gene expression and breast tumour morphology via deep learning
Open this publication in new window or tab >>Integrating spatial gene expression and breast tumour morphology via deep learning
Show others...
2020 (English)In: Nature Biomedical Engineering, E-ISSN 2157-846X, Vol. 4, no 8, p. 827-834Article in journal (Refereed) Published
Abstract [en]

Spatial transcriptomics allows for the measurement of RNA abundance at a high spatial resolution, making it possible to systematically link the morphology of cellular neighbourhoods and spatially localized gene expression. Here, we report the development of a deep learning algorithm for the prediction of local gene expression from haematoxylin-and-eosin-stained histopathology images using a new dataset of 30,612 spatially resolved gene expression data matched to histopathology images from 23 patients with breast cancer. We identified over 100 genes, including known breast cancer biomarkers of intratumoral heterogeneity and the co-localization of tumour growth and immune activation, the expression of which can be predicted from the histopathology images at a resolution of 100 µm. We also show that the algorithm generalizes well to The Cancer Genome Atlas and to other breast cancer gene expression datasets without the need for re-training. Predicting the spatially resolved transcriptome of a tissue directly from tissue images may enable image-based screening for molecular biomarkers with spatial variation. 

Place, publisher, year, edition, pages
Nature Research, 2020
Keywords
Biomarkers, Diagnosis, Diseases, Gene expression, Learning algorithms, Medical imaging, Morphology, Tumors, Co-localizations, Gene Expression Data, High spatial resolution, Image-based screenings, Immune activation, Molecular biomarker, Spatial variations, Spatially resolved, Deep learning, transcriptome, tumor marker, Article, breast cancer, breast tissue, cancer tissue, clinical article, clinician, gene identification, histopathology, human, human tissue, protein localization, st net, transcriptomics, tumor growth
National Category
Medical Imaging
Identifiers
urn:nbn:se:kth:diva-286524 (URN)10.1038/s41551-020-0578-x (DOI)000542072600002 ()32572199 (PubMedID)2-s2.0-85086705289 (Scopus ID)
Note

QC 20201217

Available from: 2020-12-17 Created: 2020-12-17 Last updated: 2025-02-09Bibliographically approved
2. Super-resolved spatial transcriptomics by deep data fusion
Open this publication in new window or tab >>Super-resolved spatial transcriptomics by deep data fusion
Show others...
2022 (English)In: Nature Biotechnology, ISSN 1087-0156, E-ISSN 1546-1696, Vol. 40, no 4, p. 476-479Article in journal (Refereed) Published
Abstract [en]

Current methods for spatial transcriptomics are limited by low spatial resolution. Here we introduce a method that integrates spatial gene expression data with histological image data from the same tissue section to infer higher-resolution expression maps. Using a deep generative model, our method characterizes the transcriptome of micrometer-scale anatomical features and can predict spatial gene expression from histology images alone. 

Place, publisher, year, edition, pages
Nature Research, 2022
Keywords
Gene expression, 'current, Gene Expression Data, Generative model, High resolution, Histological images, Image data, Spatial resolution, Tissue sections, Transcriptomes, Transcriptomics, Data fusion, transcriptome
National Category
Subatomic Physics Genetics and Genomics Cancer and Oncology
Identifiers
urn:nbn:se:kth:diva-313195 (URN)10.1038/s41587-021-01075-3 (DOI)000723531000002 ()34845373 (PubMedID)2-s2.0-85120033599 (Scopus ID)
Note

QC 20220607

Available from: 2022-06-07 Created: 2022-06-07 Last updated: 2025-02-01Bibliographically approved
3. Learning Stationary Markov Processes with Contrastive Adjustment
Open this publication in new window or tab >>Learning Stationary Markov Processes with Contrastive Adjustment
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We introduce a new optimization algorithm, termed contrastive adjustment, for learning Markov transition kernels whose stationary distribution matches the data distribution. Contrastive adjustment is not restricted to a particular family of transition distributions and can be used to model data in both continuous and discrete state spaces. Inspired by recent work on noise-annealed sampling, we propose a particular transition operator, the noise kernel, that can trade mixing speed for sample fidelity. We show that contrastive adjustment is highly valuable in human-computer design processes, as the stationarity of the learned Markov chain enables local exploration of the data manifold and makes it possible to iteratively refine outputs by human feedback. We compare the performance of noise kernels trained with contrastive adjustment to current state-of-the-art generative models and demonstrate promising results on a variety of image synthesis tasks.

National Category
Computer Sciences
Identifiers
urn:nbn:se:kth:diva-341966 (URN)10.48550/arXiv.2303.05497 (DOI)
Note

QC 20240110

Available from: 2024-01-08 Created: 2024-01-08 Last updated: 2024-01-10Bibliographically approved
4. Multi-Modal Modeling of Spatial Biology Data
Open this publication in new window or tab >>Multi-Modal Modeling of Spatial Biology Data
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Spatial biology technologies provide complementary information about tissue anatomy but are often challenging or costly to combine experimentally. Here, we propose a method for multi-modal modeling of spatial biology data that integrates diverse data types and can be used for cross-modality data transfer. We demonstrate the method on histology-guided gene expression imputation and super resolution in sequencing-based spatial transcriptomics, and on feature imputation in high-resolution in situ data.

National Category
Bioinformatics (Computational Biology)
Identifiers
urn:nbn:se:kth:diva-341967 (URN)
Available from: 2024-01-08 Created: 2024-01-08 Last updated: 2024-01-10Bibliographically approved

Open Access in DiVA

summary(9910 kB)376 downloads
File information
File name SUMMARY01.pdfFile size 9910 kBChecksum SHA-512
b73ba6aacf7fe4a51dad64e5d8e8a12d05e8761ca43006afcf883fbd0de636329a9c8cc0adcbf572bf6ee4344cc36b45d201ac25ea23352ab781a2dee35d973e
Type summaryMimetype application/pdf

Authority records

Bergenstråhle, Ludvig

Search in DiVA

By author/editor
Bergenstråhle, Ludvig
By organisation
Gene TechnologyScience for Life Laboratory, SciLifeLab
Bioinformatics (Computational Biology)

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1539 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf