kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Near-ambient pressure velocity map imaging
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Process Technology.ORCID iD: 0000-0003-2099-1174
2024 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
Näraomgivningstryck hastighetskarta avbildning (Swedish)
Abstract [en]

Catalytic reactions on solid surfaces have been studied under Ultra-high vacuum (UHV) conditions for decades. These studies provide crucial information for catalytic reactions, such as surface structures, adsorption sites, and reaction mechanisms. However, industrial catalysis operates under high gas pressure to increase the reaction rate, so the knowledge we learn from the previous UHV studies may not be able to directly transfer to the industry. This difference is referred to as the “pressure gap”, and it represents the difficulties that scientists encounter when attempting to investigate and comprehend catalytic reactions at high pressure. To address this issue, in situ/operando techniques and instruments have been developed to study reactions at pressures closer to real-world applications.The present thesis aims to showcase the new instrument, Near-Ambient Pressure Velocity Map Imaging (NAP-VMI), and its applications to molecular spectroscopy and surface science at near-ambient pressures. This instrument features a velocity map imaging (VMI) setup with redesigned ion optics and uses differential pumping to achieve a working pressure of 10−3 mabr. It allows time-resolved measurements at microsecond time scales using the pump-probe technique with a pulsed molecular beam and a pulsed laser. The performance is validated using N2O photodissociation and N2 surface scattering. CO oxidation on Pd(110) and Pd(100) surfaces is studied at elevated oxygen pressure (1×10−5 mbar) where the surfaces reconstruct.The results show the suppression of CO2 production in oxygen rich environments for both surfaces. The difference in kinetics and dynamics behavior between the two surfaces also suggests that surface structures and adsorption sites are important in the reaction mechanisms. These findings highlight the importance of surface structure in catalytic reactions and pave the way for more effective catalysts to be designed by tailoring surface properties and reaction conditions.

Abstract [sv]

Katalytiska reaktioner på fasta ytor har studerats under ultrahögt vakuum (UHV) i årtionden. Dessa studier ger avgörande information för katalytiska reaktioner, såsom ytstrukturer, adsorptionsställen och reaktionsmekanismer. Industriell katalys arbetar dock under högt gastryck för att öka reaktionshastigheten, så kunskapen vi lär oss från de tidigare UHV-studierna kanske inte direkt kan överföras till industrin. Denna skillnad kallas “tryckgapet” och den representerar de svårigheter som forskare möter när de försöker undersöka och förstå katalytiska reaktioner vid högt tryck. För att lösa detta problem har in situ/operando metoder och instrument utvecklats för att studera reaktioner vid tryck som ligger närmare verkliga tillämpningar. Den föreliggande avhandlingen syftar till att visa upp det nya instrumentet, nära-omgivande tryckhastighetskarta-avbildning (NAP-VMI) och dess tillämpningar för molekylär spektroskopi och ytvetenskap vid nära-omgivande tryck. Detta instrument har en hastighetskarta-avbildning (VMI) med omdesignadjonoptik och använder differentialpumpning för att uppnå ett arbetstryckpå 10−3 mabr. Den tillåter tidsupplösta mätningar på mikrosekunders tidsskalormed hjälp av pump-probe-teknik med pulsmolekylär stråle och pulslaser. Prestandan valideras med hjälp av N2O fotodissociation och N2 ytspridning. CO oxidation på Pd(110) och Pd(100) ytan studeras vid förhöjt syretryck (1 × 10−5 mbar) där ytorna rekonstrueras. Resultaten visar undertryckandet av CO2 produktion i syrerika miljöer för båda ytorna. Skillnaden i kinetik och dynamikbeteende mellan de två ytorna tyder också på att ytstrukturer och adsorptionsställen är viktiga i reaktionsmekanismerna. Dessa fynd framhäver vikten av ytstruktur i katalytiska reaktioner och banar väg för mer effektiva katalysatorer som kan utformas genom att skräddarsy ytegenskaper och reaktionsförhållanden.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. , p. 64
Series
TRITA-CBH-FOU ; 2023:62
Keywords [en]
Catalyst, Surface reaction, Near-ambient pressure, CO, CO2, CO oxidation, Pd, Palladium, Instrument design, Velocity-map imaging
Keywords [sv]
Katalysator, Ytreaktion, Näraomgivningstryck, CO, CO2, CO oxidation, Pd, Palladium, Instrumentdesign, Hastighetskartbildning
National Category
Physical Chemistry Chemical Engineering
Research subject
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-342358ISBN: 978-91-8040-811-0 (print)OAI: oai:DiVA.org:kth-342358DiVA, id: diva2:1828247
Public defence
2024-02-21, F3, Lindstedtsvägen 26, https://kth-se.zoom.us/webinar/register/WN_QqAA5cWGR7aRA1aIQK_k-A, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, ITM17-0236
Note

QC 20240117

Available from: 2024-01-17 Created: 2024-01-16 Last updated: 2024-02-06Bibliographically approved
List of papers
1. Near-ambient pressure velocity map imaging
Open this publication in new window or tab >>Near-ambient pressure velocity map imaging
2022 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 157, no 3, article id 034201Article in journal (Refereed) Published
Abstract [en]

We present a new velocity map imaging instrument for studying molecular beam surface scattering in a near-ambient pressure (NAP-VMI) environment. The instrument offers the possibility to study chemical reaction dynamics and kinetics where higher pressures are either desired or unavoidable, adding a new tool to help close the "pressure gap " between surface science and applied catalysis. NAP-VMI conditions are created by two sets of ion optics that guide ions through an aperture and map their velocities. The aperture separates the high pressure ionization region and maintains the necessary vacuum in the detector region. The performance of the NAP-VMI is demonstrated with results from N2O photodissociation and N-2 scattering from a Pd(110) surface, which are compared under vacuum and at near-ambient pressure (1 x 10(-3) mbar). NAP-VMI has the potential to be applied to, and useful for, a broader range of experiments, including photoelectron spectroscopy and scattering with liquid microjets.

Place, publisher, year, edition, pages
AIP Publishing, 2022
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-316019 (URN)10.1063/5.0098495 (DOI)000829482700006 ()35868938 (PubMedID)2-s2.0-85134886878 (Scopus ID)
Note

QC 20220809

Available from: 2022-08-09 Created: 2022-08-09 Last updated: 2024-10-02Bibliographically approved
2. Time-Resolved Surface Reaction Kinetics in the Pressure Gap
Open this publication in new window or tab >>Time-Resolved Surface Reaction Kinetics in the Pressure Gap
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We extend the use of our recently developed Near-Ambient Pressure Velocity Map Imaging (NAP-VMI) technique to study the kinetics and dynamics of catalytic reactions in the pressure gap. As an example, we show that NAP-VMI combined with molecular beam surface scattering allows the direct measurement of time- and velocity-resolved kinetics of the scattering and oxidation of CO on the Pd(110) surface with oxygen pressures at the surface up to 1× 10−5 mbar, where different metastable surface structures form. Our results show that the c(2×4) oxide structure formed at low O2 pressure is highly active for CO oxidation. The velocity distribution of the CO2 products shows the presence of two reaction channels, which we attributeto reactions starting from two distinct but rapidly interconverting CO binding sites. The effective CO oxidationreaction activation energy is Er = (1.0 ± 0.13) eV. The CO2 production is suppressed at higher O2 pressure due to the number of antiphase domain boundaries increases, and the missing row sites are filled by O–atoms at O2 pressures approaching 1× 10−6 mbar. Filling of these sites by O–atoms reduces the CO surface lifetime, meaningthe surface oxide is inactive for CO oxidation. We briefly outline further developments planned for the NAP-VMI and its application to other types of experiments.

National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-342118 (URN)
Funder
Swedish Foundation for Strategic Research, ITM17-0236
Note

QC 20240118

Available from: 2024-01-12 Created: 2024-01-12 Last updated: 2024-10-02Bibliographically approved
3. Bimodel Activity on Heterogeneous Catalysts: CO oxidation on Pd(100)
Open this publication in new window or tab >>Bimodel Activity on Heterogeneous Catalysts: CO oxidation on Pd(100)
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Time-resolved kinetics of CO oxidation on Pd(100) are studied using near-ambient pressure velocity map imaging (NAP-VMI) with a pulsed molecular beam. We observed two types of bimodel activities to CO oxidation at different oxygen exposures. To explain this behavior, we have developed two kinetic models with two different surface configurations. Three reaction channels are discovered on Pd(100) under oxygen rich environment, representing CO oxidation on different metastable surfaces. We assign those reaction channels to: CO oxidation (1) on a pristine metal surface, (2) on an epitaxial multilayer PdO(101), and (3) on a domain boundary between Pd(100) and (√5 × √5) single layer surface oxide. All reaction channels can be described in the Langmuir–Hinshelwood mechanism. This is a direct evidence of the coexistence of multiple surface activities to the CO oxidation on the Pd(100) surface. 

National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-342119 (URN)
Funder
Swedish Foundation for Strategic Research, ITM17-0236
Note

QC 20240122

Available from: 2024-01-12 Created: 2024-01-12 Last updated: 2024-01-22Bibliographically approved

Open Access in DiVA

Summary(8748 kB)500 downloads
File information
File name FULLTEXT01.pdfFile size 8748 kBChecksum SHA-512
53703ad8d7cc69bce6c21ef0d3ae8646a0ad8e05c76bfef8d68ff4cdf2acc8da6aec98d845fd15584cb676f5e9afd75c6fb3a17466002cc1831424e5169343bd
Type fulltextMimetype application/pdf

Authority records

Chien, Tzu-En

Search in DiVA

By author/editor
Chien, Tzu-En
By organisation
Process Technology
Physical ChemistryChemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 500 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1297 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf