kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Co-culture platform for tuning of cancer receptor density allows for evaluation of bispecific immune cell engagers
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.ORCID iD: 0009-0000-0579-3060
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.ORCID iD: 0000-0001-7987-6600
Affibody Medical AB, Scheeles väg 2, SE-171 65 Solna, Sweden, Scheeles väg 2.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.ORCID iD: 0000-0001-5320-5227
Show others and affiliations
2024 (English)In: New Biotechnology, ISSN 1871-6784, E-ISSN 1876-4347, Vol. 79, p. 120-126Article in journal (Refereed) Published
Abstract [en]

Cancer immunotherapy, where a patient's immune system is harnessed to eradicate cancer cells selectively, is a leading strategy for cancer treatment. However, successes with immune checkpoint inhibitors (ICI) are hampered by reported systemic and organ-specific toxicities and by two-thirds of the patients being non-responders or subsequently acquiring resistance to approved ICIs. Hence substantial efforts are invested in discovering novel targeted immunotherapies aimed at reduced side-effects and improved potency. One way is utilizing the dual targeting feature of bispecific antibodies, which have made them increasingly popular for cancer immunotherapy. Easy and predictive screening methods for activation ranking of candidate drugs in tumor contra non-tumor environments are however lacking. Herein, we present a cell-based assay mimicking the tumor microenvironment by co-culturing B cells with engineered human embryonic kidney 293 T cells (HEK293T), presenting a controllable density of platelet-derived growth factor receptor β (PDGFRβ). A target density panel with three different surface protein levels on HEK293T cells was established by genetic constructs carrying regulatory elements limiting RNA translation of PDGFRβ. We employed a bispecific antibody-affibody construct called an AffiMab capable of binding PDGFRβ on cancer cells and CD40 expressed by B cells as a model. Specific activation of CD40-mediated signaling of immune cells was demonstrated with the two highest receptor-expressing cell lines, Level 2/3 and Level 4, while low-to-none in the low-expressing cell lines. The concept of receptor tuning and the presented co-culture protocol may be of general utility for assessing and developing novel bi-specific antibodies for immuno-oncology applications.

Place, publisher, year, edition, pages
Elsevier BV , 2024. Vol. 79, p. 120-126
Keywords [en]
Expression tuning, Receptor density, Regulatory elements, Screening platform
National Category
Cancer and Oncology Immunology in the medical area
Identifiers
URN: urn:nbn:se:kth:diva-342383DOI: 10.1016/j.nbt.2023.12.012PubMedID: 38159596Scopus ID: 2-s2.0-85181763897OAI: oai:DiVA.org:kth-342383DiVA, id: diva2:1828895
Note

QC 20240122

Available from: 2024-01-17 Created: 2024-01-17 Last updated: 2024-05-21Bibliographically approved
In thesis
1. Improved candidate screening through tailored co-culture assays and precise tuning of protein expression
Open this publication in new window or tab >>Improved candidate screening through tailored co-culture assays and precise tuning of protein expression
2024 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The field of biopharmaceuticals is a rapidly growing one. In the last ten years the number of approved biopharmaceuticals has more than doubled. A major hurdle to overcome for increased availability of all the new, effective biopharmaceuticals is the cost of treatment. Much of this can be attributed to the sheer time required for their development. Owing to this, interest in improvements to the biopharmaceuticals and their development process has also rapidly increased. As costs increase the further into development a drug candidate progresses, increasing the fidelity of screening at early stages could alleviate some of the exorbitant costs of development.

In paper I, we showcase a novel way of targeting the tumor microenvironment (TME) to allow for TMElocalized CD40 activation. This is of interest as CD40 agonists have shown great potential for immune activation, but with systemic activation leading to severe adverse effects. The localized activation is achieved through the construction of an affinity fusion protein termed an AffiMab through fusion of a platelet derived growth factor receptor beta (PDGFRβ) targeting affibody to the heavy chain of a CD40 agonistic monoclonal antibody (mAb). We demonstrate PDGFRβ-dependent activation in a variety of assays, showing that the approach merits further investigation.

Building on the activation assays set up in paper I, we aim to generate an in vitro screening platform for immune cell engagers in paper II. Screening candidates for on-target off-tumor activation is essential, as such activation would lead to adverse effects and be a doselimiting factor. To screen for this, we construct a series of plasmids which upon transfecting cells allow for different levels of a cell-surface target protein to be expressed, a so-called target density panel. This is achieved through the use of hairpin forming elements in the 5’ untranslated region of the mRNA dubbed regulatory elements (RgEs). Through use of different RgEs, we show that a target density panel can be generated and validate it in activation assays with the AffiMab developed in paper I. The platforms’ uniform cell surface background due to all different levels of target being expressed in the same host cell line and tunability through use of different RgEs are features that make it interesting for further research.

Finally in paper III, we construct and test an improved translation initiation site (TIS) sequence. Using previous studies on the impact of the nucleotides in the sequence on the efficacy of the TIS, we constructed a novel sequence, TISNOV. This sequence enhanced titer and quality for recombinant production of IgG1 and IgG4 in both stable and transient settings. Further research into other TIS sequences and their uses in regulating protein expression, as well as usage of the TISNOV to improve expression of difficult to express proteins such as bispecifics remain interesting.

In conclusion this thesis focuses on different manners to improve and hasten development of new biopharmaceuticals through usage of new workflows, platforms, and genetic engineering strategies.

Abstract [sv]

Det biologiska läkemedelsfältet är i snabb tillväxt. De senaste tio åren har antalet godkända biologiska läkemedel mer än fördubblats. Den höga kostnaden för behandlingar med biologiska läkemedel är dock ett stort hinder som måste överkommas för att öka tillgängligheten till nya, effektiva behandlingar. Mycket av kostnaden kan attribueras till den långa utvecklingstiden för dem. Som en följd av detta har intresset för förbättringar av biologiska läkemedel och deras framställningsprocess även det ökat kraftigt. Eftersom kostnaderna ökar desto längre in i processen en läkemedelskandidat tar sig är förbättringar av tidiga tester av läkemedelskandidater en god kandidat till att minska de stora kostnaderna för läkemedelsutveckling.

I artikel I visar vi ett nytt sätt för att rikta läkemedel mot tumörmikromiljön (TME) och möjliggöra TMEriktad CD40-aktivering. Detta är av intresse då CD40- agonister har visat stor potential för immunaktivering, men lidit av bieffekter som uppkommit av systemisk immunaktivering. Den lokaliserade immunaktiveringen uppnås genom ett fuserat affinitetsprotein benämnt AffiMab, där en affibody riktat mot trombocytrelaterad tillväxtfaktor beta (PDGFRβ) fuserats till den tunga kedjan av en CD40-agonistisk monoklonal antikropp (mAb). Vi visar PDGFRβ-beroende aktivering i ett flertal av aktiveringsanalyser, vilket visar att tillvägagångssättet meriterar fortsatt forskning.

Som en påbyggnad till arbetssättet för utvärdering i artikel I avser vi att generera en in vitro platform för utvärdering av immune cell engagers i artikel II. Att utvärdera kandidater för aktivering som är on-target off tumor är essentiellt, då sådan aktivering leder till bieffekter som begränsar doseringen av läkemedlet. För att utvärdera detta konstruerar vi en serie plasmider som efter transfektion leder till olika uttrycksnivåer att ett målprotein på cellytan, en så kallad target density panel. Vi uppnår detta genom att använda oss av hårnålsbildande element i den otranslaterade 5’ regionen av mRNAt benämnda regulatoriska element (RgEs). Genom att använda oss av olika RgEs kan vi visa att olika målproteinsdensiteter kan genereras samt validera dem i aktiveringsanalyser med AffiMaben som utvecklades i artikel I. Den uniforma bakgrunden på cellytorna som följd av att alla nivåer av målprotein uttrycks i samma cellinje samt plattformens reglerbarhet genom användande av olika RgEs är egenskaper som gör att plattformen är intressant för vidare forskning.

Slutligen konstruerar vi en förbättrad sekvens för translationinitieringssstället (TIS) och testar den i artikel III. Med grund i tidigare studier kring vilken inverkan olika nukleotider i sekvensen har på effektiviteten hos en TIS konstruerar vi en ny sekvens, TISNOV. Denna sekvens uppvisar ökad titer och kvalitet för rekombinant produktion av IgG1 och IgG4 i transienta och stabila miljöer. Det är av fortsatt intresse att forska djupare kring andra sekvenser av TIS samt deras användning för att förbättra uttrycket av svåruttryckta proteiner såsom bispecifiker.

Sammanfattningsvis har denna avhandling fokuserat på olika tillvägagångssätt för att förbättra och påskynda utveckling av nya biologiska läkemedel, såsom nya arbetssätt, nya analysplattformar, och strategier för genmanipulation.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. 51
Series
TRITA-CBH-FOU ; 2024:17
National Category
Biochemistry Molecular Biology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-346648 (URN)978-91-8040-963-6 (ISBN)
Presentation
2024-06-14, Sal Q2, Malvinas väg 10, via Zoom: https://kth-se.zoom.us/j/64260982077, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2024-05-21

Available from: 2024-05-21 Created: 2024-05-21 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Mebrahtu, AmanAniander, GustavMoradi, MonaThalén, NiklasRockberg, Johan

Search in DiVA

By author/editor
Mebrahtu, AmanAniander, GustavMoradi, MonaThalén, NiklasRockberg, Johan
By organisation
Protein Technology
In the same journal
New Biotechnology
Cancer and OncologyImmunology in the medical area

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 200 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf