kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Over-Current Capability of Silicon Carbide and Silicon Devices for Short Power Pulses with Copper and Phase Change Materials below the Chip
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems. State Key Laboratory of Electrical Insulation and Power Equipment, Xi′an Jiaotong University, Xi′an 710049, China.ORCID iD: 0000-0002-9405-0353
Hitachi Energy Research, 72178 Västerås, Sweden.
Show others and affiliations
2024 (English)In: Energies, E-ISSN 1996-1073, Vol. 17, no 2, p. 462-Article in journal (Refereed) Published
Abstract [en]

An increasing share of fluctuating and intermittent renewable energy sources can cause over-currents (OCs) in the power system. The heat generated during OCs increases the junction temperature of semiconductor devices and could even lead to thermal runaway if thermal limits are reached. In order to keep the junction temperature within the thermal limit of the semiconductor, the power module structure with heat-absorbing material below the chip is investigated through COMSOL Multiphysics simulations. The upper limits of the junction temperature for Silicon (Si) and Silicon Carbide (SiC) are assumed to be 175 and 250 ∘∘C, respectively. The heat-absorbing materials considered for analysis are a copper block and a copper block with phase change materials (PCMs). Two times, three times, and four times of OCs would be discussed for durations of a few hundred milliseconds and seconds. This article also discusses the thermal performance of a copper block and a copper block with PCMs. PCMs used for Si and SiC are LM108 and Lithium, respectively. It is concluded that the copper block just below the semiconductor chip would enable OC capability in Si and SiC devices and would be more convenient to manufacture as compared to the copper block with PCM.

Place, publisher, year, edition, pages
MDPI, 2024. Vol. 17, no 2, p. 462-
National Category
Energy Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-342424DOI: 10.3390/en17020462ISI: 001149106000001Scopus ID: 2-s2.0-85183326046OAI: oai:DiVA.org:kth-342424DiVA, id: diva2:1829167
Note

QC 20240209

Available from: 2024-01-18 Created: 2024-01-18 Last updated: 2025-03-30Bibliographically approved
In thesis
1. Enabling Short-term Over-current Capability for SiC Power Modules and its Application for Power Flow Controllers in HVDC Grids
Open this publication in new window or tab >>Enabling Short-term Over-current Capability for SiC Power Modules and its Application for Power Flow Controllers in HVDC Grids
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

With the increase in renewables integration in power systems, the demand for over current (OC) capability is increased. Until the fault clearance, converters in the power system must be able to withstand the increased currents without getting tripped by their internal protection based on thermal limits. This duration is typically 200 ms. In this thesis, various techniques have been proposed to remove the heat generated during OCs as soon as possible fromSilicon-Carbide (SiC) devices, hence increasing the OC duration. These techniques include implementing heat-absorbing materials, microchannel (MC) cooling on the top and bottom of the chip, and gate voltage augmentation during OCs. It is concluded that any cooling method (except gate voltage augmentation) gives the highest OC capability when it is implemented on top of the chip. MC cooling has the potential to increase OC capability duration until a few seconds, depending on the design of the MC block. Similarly, OC capability is significantly improved by using copper as heat-absorbing material on top and bottom (with a comparatively large block of copper) of the chip up to a few seconds, depending on the amount of OC. Even increasing the thickness of metallization on top of the chip can lead to increased OC capability. One application of the power modules with increased OC capability is in power flow controllers (PFCs). With the increase in meshing, controllability and flexibility to control the current and power in a high-voltage direct current (HVDC) system are reduced. By injecting a small amount of voltage, a PFC can change the current distribution. Existing topologies have been studied in detail by PLECS simulations and compared with respect to the number of capacitors, the control range of the PFC, the shape of voltage waveforms inserted by the PFC on the lines, number of devices, the directionality of the current, simplicity of the topology, total power semiconductor rating and losses, and protection of the topologies for external faults. A new topology, which is among the most simple topologies, has been proposed. Further, internal and external fault cases for the proposed topology have been investigated in detail. The simulations are verified by a scaled-down prototype in the lab. Simulations and experiments have been compared with respect to their per unit (pu) system and the experimental results are aligned with the simulation results.

Abstract [sv]

Med den ökande integrationen av förnybar energi i elsystemet ökar behovet på överströmstålighet. Fram till att ett fel i nätet har avhjälpts måste effektomvandlare i elsystemet kunna tåla överströmmar utan att bortkopplas av sina interna skydd. Denna tid är vanligtvis 200 ms. I denna avhandling föreslås olika tekniker att snabbt leda bort den av överströmmar generade värmen från kiselkarbid (SiC)-enheter. Detta förlänger den tid enheten kan hantera överström. Nämnda tekniker inkluderar användning av värmeabsorberande material, mikrokanalkylning (MC) på chipets ovansida och undersida samt intermittent höjning av gate-spänningen. Slutsatsen är att vilken kylmetod som helst (förutom gate-spänningshöjning) ger högst överströmstålighet när den implementeras på chipets ovansida. Mikrokanalkylning har potential att höja tillåten överströmsvaraktighet till några sekunder, beroende på konstruktionen av MC-blocket. På samma sätt förbättras överströmståligheten avsevärt genom att använda koppar som värmeabsorberande material på chipets ovansida och undersida (med ett stort kopparblock), upp till några sekunder, beroende på överströmmens storlek. Även en ökning av metalliseringens tjocklek på chipets ovansida kan leda till en förbättrad överströmstålighet. Implementering av kylning på ovansidan kan dock kräva särskilda modifieringar av kraftmodulen.

En tillämpning för kraftmoduler med förbättrad överströmstålighet är effektflödesstyrdon (PFC) i högspända likströmsnät (HVDC-nät). Med en ökande maskning i nätet minskar styrbarheten och flexibiliteten att styra ström och effekt i ett HVDC-system. Genom att injicera än förhållandevis låg spänning kan ett effektflödesstyrdon förändra strömfördelningen i ett maskar HVDC-nät. Existerande topologier har studerats i detalj med hjälp av PLECS-simuleringar och jämförts med avseende på antal kondensatorer, styrningsbegränsningar, kurvformer för de spänningar som injiceras av effektflödesstyrdonet i ledningarna, antal komponenter, strömriktning, topologins enkelhet, total effekthalvledar-märkeffekt och förluster samt skydd av topologierna mot externa fel. En ny kretstopologi har föreslagits. Dessutom har interna och externa felfall för den föreslagna topologin och dess skyddskretsar undersökts i detalj med hjälp av PLECS-simuleringar. Simuleringarna har verifierats med en nedskalad prototyp i laboratoriet. Simuleringar och experiment har jämförts genom användning av ett per-unit-system, och de experimentella resultaten överensstämmer med simuleringsresultaten.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. xii, 78
Series
TRITA-EECS-AVL ; 2025:38
Keywords
Over-current capability, cooling, faults, gate voltage, graphite, heatabsorbing materials, high-voltage direct current (HVDC) grids, LM108, lithium, LTSpice simulation, metals, microchannels, phase change materials, PLECS simulations, power engineering, power flow controllers, power semiconductor devices, protection circuits, reliability, silicone carbide, top and bottom cooling, topologies, wide-band gap devices, COMSOL simulation, Överströmstålighet, kylning, fel, gate-spänning, grafit, värmeabsorberande material, högspänd likströmsöverföring (HVDC), LM108, litium, LTSpice-simulering, metaller, mikrokanaler, fasändrande material, PLECS-simuleringar, elkraftteknik, effektflödesstyrdon, krafthalvledarenheter, skyddskretsar, tillförlitlighet, kiselkarbid, kylning på topp och botten, topologier, bredbandgaps-enheter, COMSOL-simulering
National Category
Power Systems and Components
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-361819 (URN)978-91-8106-237-3 (ISBN)
Public defence
2025-04-28, Kollegiesalen, Brinellvägen 6, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20250331

Available from: 2025-03-31 Created: 2025-03-30 Last updated: 2025-04-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Bhadoria, ShubhangiNee, Hans-Peter

Search in DiVA

By author/editor
Bhadoria, ShubhangiNee, Hans-Peter
By organisation
Electric Power and Energy Systems
In the same journal
Energies
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 160 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf