kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tracking backflow events and flow separation in wings
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0003-4109-0009
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST).ORCID iD: 0000-0002-6627-4392
Department of Aerospace Science and Technologies, Politechnico di Milano, Milan.
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.ORCID iD: 0000-0002-7448-3290
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This study presents an in-depth analysis of backflow event dynamics within non-equilibrium turbulent boundary layers under strong adverse pressure gradients. Large Eddy Simulation (LES) of the flow around a NACA 4412 wing profile at a chord-based Reynolds number of 4×105 and two angles of attack (5 and 11 degrees) are carried out with the spectral-element code Nek5000. The research focuses on the identification and time-tracking of backflow events, their growth mechanisms, and their impact on mean flow separation. Directed Acyclic Graphs (DAGs) are constructed to map the interconnectivity of backflow events over the wing surface, providing a framework to describe their evolution.The study reveals that while most backflow events are small, disconnected and localized, a significant portion of events (around 20%) display significant growth due to their merging with other backflows—a phenomenon not extensively reported in canonical flow studies. The major contribution of this research is the discovery of a single dynamical process, encapsulated by a unique DAG, that characterizes both the separation and incipient flow separation. The importance of merging in the development of large-scale separated regions is highlighted, suggesting that the merging process is a critical factor in the flow separation mechanism. The findings offer potential applications in flow control, suggesting that mitigating the merging process of backflow events could be an effective strategy to delay or prevent flow separation. This insight opens new avenues for the development of flow control techniques aimed at improving aerodynamic efficiency and performance. Further investigations could yield significant advancements in active flow control systems, contributing to the optimized design of aerodynamic surfaces and energy-efficient aerodynamic operations.

National Category
Fluid Mechanics
Research subject
Aerospace Engineering; Engineering Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-342439OAI: oai:DiVA.org:kth-342439DiVA, id: diva2:1829531
Note

QC 20240123

Available from: 2024-01-19 Created: 2024-01-19 Last updated: 2025-02-09Bibliographically approved
In thesis
1.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.
2. Wings, turbulent boundary layers and flow separation
Open this publication in new window or tab >>Wings, turbulent boundary layers and flow separation
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Vingar, turbulenta gränsskikt och avlösning
Abstract [en]

The present doctoral thesis investigates the turbulent flow developing around wing sections, focusing on the impact of adverse-pressure-gradient (APG) conditions on turbulent boundary layers (TBLs) and the physics of flow separation. Both experimental and numerical methods are employed to generate high-fidelity data sets and provide an in-depth analysis of the flow.

The first objective of this thesis is the development of a comprehensive database for the flow around a NACA 4412 wing profile. For this purpose, adaptive mesh refinement (AMR) is used together with the spectral-element method code Nek5000. With AMR, high-resolution Large Eddy Simulations (LES) are conducted at various Reynolds numbers (Rec = 2×105, 4×105 and 1×106) and angles of attack (AoA=5°, 8°, 11°, 14°), which were previously unattainable. The effect that strong APGs have on TBLs developing around a wing section is assessed through the collection of statistics and time series. The results demonstrate the influence of APG conditions on both the mean and variance profiles of velocity, and on the distribution and production of turbulence energy within the TBL. Additionally, the connection of APG TBLs with flow separation is explored through the development of an in-situ identification and tracking algorithm, tightly integrated into Nek5000. Our findings show that, in contrast to canonical flows, backflow events in TBLs under strong APGs extensively merge to form larger structures that grow exponentially in size, eventually leading to significant flow separation near the wing’s trailing edge.

Furthermore, a wind-tunnel experimental campaign is conducted to validate and extend the numerical results. Pressure, wall-shear stress and velocity measurements were carried out in the MTL wind tunnel at KTH Royal Institute of Technology. The study also scrutinizes measurement methodologies for APG TBLs, examining uncertainties in skin-friction determination and the impact of hot-wire probe lengths on velocity variance profiles.

Finally, a study based on Reynolds-averaged Navier–Stokes (RANS) simulations, utilizing high-fidelity data for validation, is performed to assess the optimization of flow-control schemes based on blowing and suction. This study, later extended to a transonic airfoil, showcases Bayesian optimization (BO) as an efficient method for computational fluid dynamics (CFD)-based optimization problems.

Abstract [sv]

Denna doktorsavhandling undersöker det turbulenta flödet runt vingsektioner, med fokus på effekten av negativa tryckgradienter (APG) på turbulenta gränsskikt (TBL) och fysiken bakom avlösning. Både experimentella och numeriska metoder används för att generera data och genomföra en noggrant analys av flödet.

Det första målet med avhandlingen är att utveckla en omfattande databas för flödet runt en NACA 4412 vingprofil. För detta ändamål används adaptiv nätförfining (AMR) i det spektralelementbaserade programmet Nek5000. Med AMR genomförs väggupplösta large-eddy simuleringar (LES) vid olika Reynoldstal (Rec = 2×105, 4×105 och 1×106) och anfallsvinklar (AoA=5°, 8°, 11°, 14°), vilka tidigare varit ouppnåeliga. Effekten av den starka negativa tryckgradienten på TBL som utvecklas runt vingsektionen bedöms genom insamling av statistik och tidsserier. Resultaten visar på APG:s påverkan på både medel- och variansprofiler för hastighet, samt på fördelning och produktion av turbulenta energien inom TBL. Dessutom utforskas sambandet mellan APG TBL och avlösning genom utveckling av en in-situ identifierings- och spårningsalgoritm, integrerad i Nek5000. Våra resultat visar att negativa hastigheter händelser i TBL under starka APG interagerar betydligt med varandra, sammanflätar och bildar större strukturer som ökar exponentiellt i storlek, och så småningom leder till betydande avlösning nära vingens bakkant. 

Dessutom genomförs en experimentkampanj i vindtunnel för att validera och utöka de numeriska resultaten. Mätningar av tryck, väggskjuvspänning och hastighet utförs i MTL vindtunneln vid KTH Kungliga Tekniska Högskolan. Studien granskar också mätmetoder för APG TBL, undersöker osäkerheter i bestämningen av väggskjuvspänning samt effekterna av längden på varmtrådprober på mätprofiler för hastighetsvarians.

Slutligen utförs en RANS-studie, där högupplösta data används för validering, för att bedöma optimering av flödeskontrollmetoder baserade på blåsning och sugning. Denna studie, som senare utvidgas till ett transoniskt vingprofil, visar på Bayesiansk optimering som en effektiv metod för CFD (computational fluid dynamics)-baserade optimeringsproblem.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 101
Series
TRITA-SCI-FOU ; 2024-03
Keywords
Wings, turbulent boundary layers, adverse pressure gradients, flow separation, numerical simulations, wind-tunnel experiments, flow control., Vingar, turbulenta gränsskikt, negativa tryckgradienter, avlösning, numeriska simuleringar, vindtunnel-experiment, flow control
National Category
Fluid Mechanics
Research subject
Aerospace Engineering; Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-342447 (URN)978-91-8040-827-1 (ISBN)
Public defence
2024-02-16, F3, Lindstedtsvägen 26, Stockholm, 10:15 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation
Note

QC 240122

Available from: 2024-01-22 Created: 2024-01-19 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Mallor, FerminLiu, JiahuiPeplinski, AdamWeinkauf, TinoSchlatter, Philipp

Search in DiVA

By author/editor
Mallor, FerminLiu, JiahuiPeplinski, AdamWeinkauf, TinoSchlatter, Philipp
By organisation
Linné Flow Center, FLOWFluid Mechanics and Engineering AcousticsComputational Science and Technology (CST)Engineering Mechanics
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 718 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf