Geospatial Open-Source Modelling for Integrated Energy Access Planning: New Tools and Methods to Bridge the Energy Access Gap
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
In 2015 the United Nations (UN) General Assembly agreed on the Sustainable Development Goals (SDGs), a set of 17 goals defined by 169 targets to be reached by 2030. Amongst them is SDG 7. SDG 7 states “Ensure access to affordable, reliable, sustainable and modern energy for all”. The first target of SDG 7 mentions access to electricity and clean cooking specifically. Access to electricity brings with it myriad benefits across several sectors, including residential, health and education. Access to clean cooking can help reduce adverse health and environmental effects, as well as high opportunity costs related to current cooking practices, amongst other benefits.
While SDG 7 has been recognized as a key pillar to achieve sustainable development, its achievement has remained elusive. As of 2021, 675 million people worldwide were estimated to lack access to electricity. The largest access gap is found in Sub-Saharan Africa (SSA) where only 50% of the population had electricity access. For clean cooking the situation is worse, with around 2.3 billion people globally lacking access. Again, the access gap is most pronounced in SSA with only 18% of the population in the region using clean cooking. The situation in SSA is further exacerbated by the fact that the population increases faster than the clean cooking access rate.
For electricity access modelling Geographic Information Systems (GIS) and the use of geospatial data is being increasingly leveraged. As every case in a study area is unique and requires context-specific information, the spatial dimension of GIS can help to more effectively model towards universal electricity access. Resource availability, fuel costs and access to infrastructure change spatially and a geospatial approach helps to capture this. Such reasoning can also be applied to clean cooking. Yet, at the time of writing this thesis, there was no geospatial tool comparing the relative costs and benefits of different cooking solutions. This work aims to advance the state-of-the-art in geospatial modelling approaches to support integrated energy planning towards universal electricity and clean cooking access.
Geospatial electrification modeling, while proven useful, is still a new field with many on-going developments. One such significant development was the move from raster population datasets to aggregated vector settlements. Raster datasets divide an area into uniform units with each unit including some piece of information about the area. It can be beneficial to have uniform units in modelling, but for this reason rasters fail to capture the size and shape that population settlements naturally have. On the other hand, aggregating raster datasets to vector settlements may impact modelling results. With this in mind, the first research question explores how the aggregation of data changes modelling results in geospatial electrification models. Paper I presents an open-source algorithm for the creation of aggregated vector settlements from raster data. In Paper I this algorithm is applied to 44 countries in SSA. As part of the algorithm, night-time lights are used to assess electrification rates within settlements and population density is used to assess the urban-rural divide of each country. The electrification rates and urban-rural divide is subsequently validated against survey data and compared to previous results. Following this, Paper II compares results produced by the Open Source Spatial Electrification Tool (OnSSET) as the level of population aggregation changes. This is done for three case studies (Benin, Malawi and Namibia), by producing 26 population bases for each country. Two of the population bases are rasters with different resolutions, three use the method developed in Paper I and 21 are clustered using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. Paper II also presents the first Global Sensitivity Analysis (GSA) conducted for geospatial least-cost electrification models. The GSA enables comparisons between the importance of parameters that previous research has identified as important and the importance of population aggregation.
The second research question explores if, and how, GIS can be used to develop clean cooking tools comparing different cooking solutions. To this end, Paper III presents OnStove. OnStove is the first geospatial tool comparing the relative costs and benefits of different cooking solutions. In Paper III the tool is described and applied for the first time to 44 countries in SSA. The tool is open-source and all data used to run the analysis (as well as the results) are published and made available for a broader public. Two main scenarios are developed for SSA assessing differences between current cooking practices and potential pathways for maximizing net-benefits (defined as total benefits minus total costs). In addition to the main scenarios, 680 additional scenarios are developed as part of a GSA to assess the impact of uncertainty of 33 parameters on key outputs.
Finally, the last research question assesses how integrated energy access planning impacts the results of existing geospatial electrification (OnSSET) and clean cooking (OnStove) tools. This is done by combining the two aforementioned tools in Paper IV in a case study of Kenya. The results describe how the least-cost technology mix and Levelized Cost of Electricity (LCoE) changes across Kenya as the increased electricity load following the inclusion of electric cooking is accounted for in OnSSET. On the cooking side the paper outlines how the competitiveness of electric stoves change as the electrification rate increase and the LCoE change. Paper IV also deepens the insights on research questions one and two as a new resolution is used to generate the population clusters using the algorithm developed in Paper I and new developments are done to OnStove.
Abstract [sv]
År 2015 kom Förenta nationernas (FN) generalförsamling överens om en uppsättning av 17 hållbarhetsmål, definierade av 169 delmål. Avsikten är att dessa ska uppnås senast 2030. Bland dem finns mål 7. Mål 7 ämnar att "Säkerställa tillgång till ekonomiskt överkomlig, tillförlitlig, hållbar och modern energi för alla". Det första delmålet för mål 7 nämner specifikt tillgång till elektricitet och ren teknik för matlagning. Tillgång till elektricitet medför många fördelar över olika sektorer, inklusive hushåll, sjukvård och skola. Tillgång till ren teknik för matlagning är också viktig och kan bland annat bidra till att minska skadliga hälso- och miljöeffekter samt höga alternativkostnader relaterade till nuvarande matlagningspraxis.
Även om mål 7 har visat sig vara viktigt, har dess uppnående förblivit flyktigt. År 2021 uppskattades 675 miljoner människor världen över sakna tillgång till el. Det största tillgångsgapet återfinns i Afrika söder om Sahara (SSA), där endast 50 % av befolkningen hade tillgång till el. När det gäller ren teknik för matlagning är situationen desto värre, med cirka 2,3 miljarder människor globalt som förlitar sig på icke-rena matlagningsbränslen. Återigen är tillgångsgapet mest påtagligt i SSA, där endast 18 % av befolkningen använder ren matlagning. Situationen i SSA förvärras ytterligare av att befolkningen ökar i snabbare takt än tillgången till ren teknik för matlagning.
För modellering av tillgång till elektricitet används alltmer geografiska informationssystem (GIS) och geospatial data. Eftersom varje fall i ett område är unikt och kräver kontextspecifik information, kan geospatial data effektivisera modelleringen mot universell tillgång till elektricitet. Tillgänglighet av resurser, bränslekostnader och tillgång till diverse infrastruktur förändras över ett undersökningsområde och geospatiala metoder hjälper till att inkludera dessa förändringar. Det finns ingen anledning att tro att detta inte gäller även för frågan om ren teknik för matlagning. Ändå finns det hittills inga geospatiala verktyg som jämför de relativa kostnaderna och fördelarna med olika matlagningslösningar.
GIS i modellering av tillgång till elektricitet, även om bevisat användbart, är fortfarande en relativt ny företeelse och mycket utveckling sker fortfarande inom området. En sådan betydande utveckling var övergången från rasterbaserade populationskartor till aggregerade vektorkartor. Ett raster delar in ett område i enhetliga delar där varje del innehåller information om studieområdet. Det kan vara fördelaktigt med enhetliga enheter vid modellering, men detta gör att rasters ofta misslyckas med att fånga den storlek och form som samhällen naturligt har. Å andra sidan kan aggregering av rasters till vektorssamhällen påverka modelleringsresultat. Med detta i åtanke utforskar den första forskningsfrågan hur aggregering av data förändrar modelleringsresultaten i geospatiala elektrifieringsmodeller. I Publikation I presenteras en algoritm med öppen källkod för skapandet av aggregerade vektorsamhällen utifrån rasterdata. Denna kod tillämpas på 44 länder i SSA. Som en del av publikationen används även ljus under nattetid för att bedöma elektrifieringsgraden inom samhällen och befolkningstäthet används för att bedöma den urbana-rurala uppdelningen för varje land. Elektrifieringsgraden och den urbana-rurala uppdelningen valideras därefter mot publicerad data och jämförs med tidigare resultat. Därefter jämför Publikation II resultat producerade av Open Source Spatial Electrification Tool (OnSSET) med olika nivåer av populationsaggregering. Detta görs för tre fallstudier (Benin, Malawi och Namibia), genom att producera 26 populationsbaser för varje land. Två av baserna är raster med olika upplösningar, tre använder metoden utvecklad i Publikation I och 21 är aggregerade med hjälp av Density-Based Spatial Clustering of Applications with Noise (DBSCAN) -algoritmen. Utöver detta presenterar Publikation II den första globala känslighetsanalysen för geospatiala elektrifieringsmodeller. Den globala känslighetsanalysen möjliggör jämförelser av betydelsen av parametrar som tidigare forskning har identifierat som viktiga och betydelsen av populationsaggregering.
Den andra forskningsfråga utforskar om, och hur, GIS kan användas för att utveckla verktyg för modellering av olika matlagningslösningar. För att svara på denna fråga presenteras OnStove i Publikation III. OnStove är det första geospatiala verktyget som jämför de relativa kostnaderna och fördelarna med olika matlagningslösningar. Publikation III beskriver verktyget och tillämpar det för första gången på 44 länder i SSA. Källkoden är öppen och all data som används för att köra analysen (samt resultaten) är publicerade och tillgängliga för en bredare allmänhet. Två huvudscenarion utvecklas för SSA för att bedöma potentiella skillnader mellan den nuvarande situationen och en situation där nettovärdet (definierat som totalt värde minus total kostnad) i regionen maximeras. Utöver de två huvudscenarierna utvecklas 680 scenarion som en del av en global känslighetsanalys för att bedöma 33 parametrars påverkan av viktiga resultat.
Den sista forskningsfrågan utvärderar hur resultaten från ett geospatialt elektrifieringsverktyg (OnSSET) och ett geospatialt verktyg för att modellera matlagning (OnStove) förändras när målen för universell elektrifiering och tillgång till ren matlagning modelleras samtidigt. Detta görs genom att länka de två tidigare nämnda verktygen i Publikation IV genom en fallstudie i Kenya. Resultaten beskriver hur den minst kostsamma teknikfördelningen och nivån på elpriset förändras i Kenya när elförbrukningen ökar till följd av att elektrisk matlagning inkluderas. På matlagningsfronten redogör publikationen för hur konkurrenskraften för elektriska spisar förändras när elektrifieringen ökar och nivån på elpriset förändras. Publikation IV fördjupar också insikterna om forskningsfråga ett och två då en ny upplösning används för att generera populationskluster med koden utvecklad i Publikation I och nya utvecklingar görs för OnStove.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. , p. 175
Series
TRITA-ITM-AVL ; 2024:7
National Category
Energy Systems Energy Engineering
Research subject
Energy Technology
Identifiers
URN: urn:nbn:se:kth:diva-342512ISBN: 978-91-8040-829-5 (print)OAI: oai:DiVA.org:kth-342512DiVA, id: diva2:1830417
Public defence
2024-02-19, F3 / https://kth-se.zoom.us/j/68495962820, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
2024-01-262024-01-232024-02-23Bibliographically approved
List of papers