kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Creep with Low Stress Exponents
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0002-8494-3983
2024 (English)In: Basic Modeling and Theory of Creep of Metallic Materials, Springer Nature , 2024, Vol. 339, p. 83-114Chapter in book (Other academic)
Abstract [en]

Primary creep models predict that at low stresses a stress exponent of 1 can be obtained for dislocation creep. Also experimentally this has been observed for an austenitic stainless steel. The time dependence of the primary creep verifies that it is dislocation creep. An other example is for Al at very high temperatures (Harper-Dorn creep), where at sufficiently low stresses, the stress exponent approaches 1. For both materials higher stresses give larger stress exponents as expected for dislocation creep. Obviously, diffusion and dislocation creep can be competing processes. The validity of creep models at low stresses and high temperatures as well as at high stresses and low temperatures demonstrates their wide range of usage. Since this in reality represents an extensive extrapolation, it can be consider as a direct verification of the basic creep models. In cases for Cu and stainless steels, the predicted creep rate by diffusion creep (Coble) exceeds the observed creep rate as well as the predicted one by dislocation creep by an order of magnitude. The likely explanation is that constrained boundary creep is taken place, i.e. the grain boundary creep rate cannot be essentially faster than that of the bulk.

Place, publisher, year, edition, pages
Springer Nature , 2024. Vol. 339, p. 83-114
Series
Springer Series in Materials Science, ISSN 0933-033X
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:kth:diva-342668DOI: 10.1007/978-3-031-49507-6_5Scopus ID: 2-s2.0-85182466089OAI: oai:DiVA.org:kth-342668DiVA, id: diva2:1831262
Note

QC 20240125

Available from: 2024-01-25 Created: 2024-01-25 Last updated: 2024-07-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Sandström, Rolf

Search in DiVA

By author/editor
Sandström, Rolf
By organisation
Materials Science and Engineering
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 32 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf