kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Using remote sensing data to derive built-form indexes to analyze the geography of residential burglary and street thefts
KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Urban and Regional Studies. (STF)ORCID iD: 0000-0002-0529-4824
Department of Geography, University of Cambridge, UK.
KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Urban and Regional Studies. (STF)ORCID iD: 0000-0001-5302-1698
KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geoinformatics.ORCID iD: 0000-0001-9692-8636
2025 (English)In: Cartography and Geographic Information Science, ISSN 1523-0406, E-ISSN 1545-0465, Vol. 52, no 3, p. 259-275Article in journal (Refereed) Published
Abstract [en]

By deploying remotely sensed data together with spatial statistical modeling, we use regression modeling to investigate the relationship between the density of the built environment and two types of crime. We show how the Global Human Settlement Layer (GHSL) data set, which is a measure of building density generated from Sentinel 2A satellite imagery, can be used to create different indexes to describe the built environment for the purpose of analyzing crime patterns for indoor crimes (residential burglary) and open space crimes (street theft). Analysis is at neighborhood level for Stockholm, Sweden. Modeling is then extended to incorporate six planning areas which represent different neighborhood types within the city. Modeling is further extended by adding selected social, economic, demographic and land use variables that have been found to be significant in explaining spatial variation in the two crime categories in Stockholm. Significant associations between the GHSL-based indexes and the two crime rates are observed but results indicate that allowance for differences in neighborhood type should be recognized. Average income and transport hubs were also significant variables in the investigated crime categories. The article provides a practical demonstration and assessment of the use of high-resolution satellite data to examine the association between urban density and two common types of crime and offers reflections about the use of satellite image data in crime analysis.

Place, publisher, year, edition, pages
Informa UK Limited , 2025. Vol. 52, no 3, p. 259-275
National Category
Social Sciences Architecture
Research subject
Planning and Decision Analysis, Urban and Regional Studies; Architecture, Urban Design; Geodesy and Geoinformatics, Geoinformatics; Planning and Decision Analysis, Risk and Safety
Identifiers
URN: urn:nbn:se:kth:diva-342679DOI: 10.1080/15230406.2023.2296598ISI: 001147163400001Scopus ID: 2-s2.0-85182848195OAI: oai:DiVA.org:kth-342679DiVA, id: diva2:1831556
Note

QC 20240126

Available from: 2024-01-25 Created: 2024-01-25 Last updated: 2025-04-09Bibliographically approved
In thesis
1. Understanding crime patterns using spatial data analysis: Case studies in Stockholm, Sweden
Open this publication in new window or tab >>Understanding crime patterns using spatial data analysis: Case studies in Stockholm, Sweden
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Understanding the complex relationship between urban environments and crime is crucial for effective urban planning and crime prevention strategies. Spatial analytical methods have provided valuable knowledge into crime patterns, enabling the detection of crime-concentrated environments and informing law enforcement operations and urban planning interventions. The international literature highlights the increasing use of remote sensing in crime analysis, driven by improved data availability and accuracy. Given the potential of this approach, this thesis investigates the use of spatio-temporal data analyses, particularly the incorporation of remote sensing data along with traditional socio-demographic and land use indicators in understanding the dynamics of crime in urban environments. Four crime categories—cannabis-related crimes, street theft, residential burglaries, and sexual crimes—are investigated using Stockholm City in Sweden as a case study. Remote sensing data, particularly very high-resolution imagery, combined with machine learning algorithms, such as the Random Forest classifier, facilitate the prediction of crime risk areas and the identification of environmental factors associated with crime occurrences. While the thesis reflects upon the advantages and disadvantages of using remote sensing in crime analyses, findings offer practical insights for policymakers, urban planners, and law enforcement agencies, enabling the development of data-informed strategies to foster safer and more resilient urban environments.

Abstract [sv]

Förståelsen av det komplexa sambandet mellan urbana miljöer och brott är avgörande för effektiv stadsplanering och brottsförebyggande strategier. Rumsliga analytiska metoder har gett värdefulla insikter om brottsmönster, vilket möjliggör identifiering av miljöer med hög brottskoncentration och ger underlag för brottsbekämpningsinsatser och stadsplaneringsåtgärder. Den internationella litteraturen lyfter fram den ökande användningen av fjärranalys inom brottsanalys, vilket drivs av förbättrad dataåtkomst och noggrannhet. Med tanke på potentialen i denna metod utforskar denna avhandling användningen av spatio-temporala dataanalyser, särskilt införlivandet av fjärranalysdata tillsammans med konventionella socio-demografiska och markanvändningsindikatorer för att förstå dynamiken kring brott i urbana miljöer. Fyra brottskategorier – cannabisrelaterade brott, fickstölder, bostadsinbrott och sexualbrott – undersöks med Stockholms stad i Sverige som fallstudie. Fjärranalysdata, särskilt bilder med mycket hög upplösning, i kombination med machine learning-algoritmer som Random Forest-klassificeraren, underlättar prediktionen av brottsriskområden och identifieringen av miljöfaktorer som är förknippade med brottsförekomster. Även om avhandlingen reflekterar över fördelar och nackdelar med att använda fjärranalys i brottsanalys, erbjuder våra resultat praktiska insikter för beslutsfattare, stadsplanerare och brottsbekämpande myndigheter, vilket möjliggör utvecklingen av datainformerade strategier för att främja säkrare och mer motståndskraftiga urbana miljöer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 50
Series
TRITA-ABE-DLT ; 2423
Keywords
Exploratory spatial data analysis, random forest classifier, regression analysis, remote sensing data, spatial crime analysis, Utforskande rumslig dataanalys, random forest-klassificerare, regressionsanalys, fjärranalysdata, rumslig brottsanalys
National Category
Geosciences, Multidisciplinary
Research subject
Planning and Decision Analysis, Urban and Regional Studies
Identifiers
urn:nbn:se:kth:diva-354130 (URN)978-91-8106-075-1 (ISBN)
Public defence
2024-10-25, Kollegiesalen, Brinellvägen 8, KTH Campus, https://kth-se.zoom.us/s/66904913390, Stockholm, 09:00 (English)
Opponent
Supervisors
Projects
Development of remote sensing data use for safe environment planning
Funder
Swedish Research Council Formas, 2020-01999
Note

QC 241002

Available from: 2024-10-02 Created: 2024-10-01 Last updated: 2024-10-03Bibliographically approved

Open Access in DiVA

fulltext(7161 kB)123 downloads
File information
File name FULLTEXT01.pdfFile size 7161 kBChecksum SHA-512
89c1c5e42d3778595437f4d2c532e062217ca273e217798e907c261dd3caa3e19756123e7d047fdfbb8f0afc7568e9e757db78994b2fa280b98465fbd6724f9b
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Ioannidis, IoannisCeccato, VaniaNascetti, Andrea

Search in DiVA

By author/editor
Ioannidis, IoannisCeccato, VaniaNascetti, Andrea
By organisation
Urban and Regional StudiesGeoinformatics
In the same journal
Cartography and Geographic Information Science
Social SciencesArchitecture

Search outside of DiVA

GoogleGoogle Scholar
Total: 123 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 240 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf