kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Generating synthetic turbulence with vector autoregression of proper orthogonal decomposition time coefficients
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-3814-7919
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0003-4662-8744
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0001-5204-8549
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This study introduces vector autoregression (VAR) as a linear procedure that can be used for synthetizing turbulence time series over an entire plane, allowing them to be imposed as efficient turbulent inflow conditions in simulations requiring stationary and cross-correlated turbulence time series. A VAR model is applied to the complex time coefficients derived from a Fourier-based proper orthogonal decomposition (POD) of the velocity fields of the precursor simulation of a turbulent boundary layer at a momentum thickness based Reynolds number, Re_theta=790. VAR is a statistical tool for modelling and prediction of multivariate time series through capturing linear correlations between multiple time series. By performing POD, firstly a subset of the most energetic structures in space are extracted, and then a VAR model is fitted to their time coefficients. It is observed that VAR models constructed using time coefficients of 5 and 30 most energetic POD modes per wave number (corresponding to >40% and >90% of turbulent kinetic energy across all wave numbers, respectively), are able to make accurate predictions of the evolution of the velocity field at Re_theta=790 for infinite time. Moreover, the two-dimensional velocity fields from the low-order POD-VAR are used as a turbulent inflow condition and compared against other common inflow methods. Since the VAR model can produce an infinite number of velocity planes in time, this enables reaching statistical stationarity without having to run an extremely long precursor simulation or applying ad-hoc methods such as periodic time series. 

Keywords [en]
vector autoregression, turbulent boundary layer, proper orthogonal decomposition, crosscorrelation, ordinary least squares, power spectrum, simulations
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-342784OAI: oai:DiVA.org:kth-342784DiVA, id: diva2:1833117
Note

QC 20240201

Available from: 2024-01-31 Created: 2024-01-31 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Uncertainty quantification for time varying quantities in turbulent flows
Open this publication in new window or tab >>Uncertainty quantification for time varying quantities in turbulent flows
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Osäkerhetskvantifiering för tidsvarierande storheter i turbulenta flöden
Abstract [en]

Quantification of uncertainty in results is crucial in both experiments and simulations of turbulence, yet this practice is notably underutilized. This thesis project delves into statistical tools within the framework of uncertainty quantification to systematically quantify uncertainties that occur in the time varying quantities of turbulence. Two main categories of variance estimators for quantifying time averaging uncertainties in turbulent flow time series are examined in detail – the batch-means based methods and autoregressive model-based methods. The batch size is critical to estimation of uncertainty by the batch methods. We discuss reasons for biased estimates and provide guidance on the selection of batch sizes for the non-overlapping, overlapping and batch means-batch correlations estimators, to obtain consistent estimates of uncertainty when dealing with turbulence time samples. The autoregressive model (ARM)-based estimator was found to be more efficient than the batch methods, in terms of computational efficiency and sample requirements. A novel insight into the operating principle of the ARM, enabled fast quantification of uncertainty with few samples and with batch means series. The extension of univariate autoregressive processes to model entire 2D space-time fields of turbulence, through vector autoregression has been discussed and its potential as a turbulent inflow boundary condition has been illustrated. A crucial flow case that questioned the reliability of Computational Fluid Dynamics (CFD), namely flow through Food and Drug Administration benchmark nozzle device was also simulated in this doctoral thesis project, with a well-defined turbulent inflow boundary condition. Novel insights on the flow physics due to geometrical effects were obtained through statistical analysis, anisotropy invariant maps and proper orthogonal decomposition. These insights provide answers to many open questions in this domain. This work provides analyses and methods to increase the reliability of simulations, expanding the scope of CFD to applications where safety and precision are paramount.

Abstract [sv]

Kvantifiering av osäkerhet i resultat är avgörande i både experiment och simuleringar av turbulens, men denna praxis är anmärkningsvärt underutnyttjad. Detta avhandlingsprojekt undersöker statistiska verktyg inom ramen för osäkerhetskvantifiering för att systematiskt kvantifiera osäkerheter som uppstår i de tidsvarierande kvantiteterna av turbulens. Två huvudkategorier av variansskattare för kvantifiering av tidsmedelvärderade osäkerheter i tidsserier av turbulenta flöden undersöktes i detalj;  batch-meansbaserade metoder och autoregressiva modellbaserade metoder. Batchstorleken är avgörande för uppskattning av osäkerheter med de batchbaserade metoderna. Vi diskuterar orsakerna till avvikande  skattningar och ger vägledning kring valet av batchstorlekar för de icke-överlappande, överlappande och batchmedel-batchkorrelationsskattarna, för att få konsekventa skattningar av osäkerheten vid hantering av turbulenstidssampels. Den autoregressiva modellen (ARM)-baserade estimatorn visade sig vara effektivare än batchmetoderna avseende beräkningseffektivitet och samplingskrav. En ny insikt i ARM:s funktionsprincip möjliggjorde snabb kvantifiering av osäkerheter med få stickprov och med batchmedelvärdesserier. utökningen av univariata AR-processer till att modellera hela 2D-rum-tidsfält av turbulens, genom vektorautoregression, har undersökts och dess potential som randvillkor för turbulenta inflöden har illustrerats. Ett avgörande flödesfall som utmanade tillförlitligheten av Computational Fluid Dynamics (CFD), nämligen flöde genom FDA benchmark munstycksanordning, simulerades också i denna avhandling, med ett väldefinierat turbulent inflödesrandvillkor. Nya insikter om flödesfysiken baserad på geometriska effekter erhölls genom statistisk analys, anisotropi-invarianta avbildningar och ortogonala nedbrytningstekniker. Dessa insikter ger svar på många öppna frågor inom denna domän. Detta arbete ökar simuleringarnas tillförlitlighet och utökar omfattningen av CFD till applikationer där säkerhet och precision är av största vikt.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. p. 282
Series
TRITA-SCI-FOU ; 2024:02
Keywords
uncertainty, variance estimator, autoregressive models, turbulence, computational fluid dynamics
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-342785 (URN)978-91-8040-828-8 (ISBN)
Public defence
2024-02-23, Kollegiesalen, Brinellvägen 6, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 240202

Available from: 2024-02-02 Created: 2024-01-31 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Stanly, RonithDu, ShiyuXavier, DonnatellaPerez Martinez, AdalbertoMarkidis, Stefano

Search in DiVA

By author/editor
Stanly, RonithDu, ShiyuXavier, DonnatellaPerez Martinez, AdalbertoMarkidis, StefanoRezaeiravesh, SalehSchlatter, Philipp
By organisation
Fluid Mechanics and Engineering AcousticsSeRC - Swedish e-Science Research CentreLinné Flow Center, FLOWComputational Science and Technology (CST)Turbulent simulations laboratory
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 552 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf