kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Predicting user churn using temporal information: Early detection of churning users with machine learning using log-level data from a MedTech application
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Förutsägning av användaravhopp med tidsinformation : Tidig identifiering av avhoppande användare med maskininlärning utifrån systemloggar från en medicinteknisk produkt (Swedish)
Abstract [en]

User retention is a critical aspect of any business or service. Churn is the continuous loss of active users. A low churn rate enables companies to focus more resources on providing better services in contrast to recruiting new users. Current published research on predicting user churn disregards time of day and time variability of events and actions by feature selection or data preprocessing. This thesis empirically investigates the practical benefits of including accurate temporal information for binary prediction of user churn by training a set of Machine Learning (ML) classifiers on differently prepared data. One data preparation approach was based on temporally sorted logs (log-level data set), and the other on stacked aggregations (aggregated data set) with additional engineered temporal features. The additional temporal features included information about relative time, time of day, and temporal variability. The inclusion of the temporal information was evaluated by training and evaluating the classifiers with the different features on a real-world dataset from a MedTech application. Artificial Neural Networks (ANNs), Random Forrests (RFs), Decision Trees (DTs) and naïve approaches were applied and benchmarked. The classifiers were compared with among others the Area Under the Receiver Operating Characteristics Curve (AUC), Positive Predictive Value (PPV) and True Positive Rate (TPR) (a.k.a. precision and recall). The PPV scores the classifiers by their accuracy among the positively labeled class, the TPR measures the recognized proportion of the positive class, and the AUC is a metric of general performance. The results demonstrate a statistically significant value of including time variation features overall and particularly that the classifiers performed better on the log-level data set. An ANN trained on temporally sorted logs performs best followed by a RF on the same data set.

Abstract [sv]

Bevarande av användare är en kritisk aspekt för alla företag eller tjänsteleverantörer. Ett lågt användarbortfall gör det möjligt för företag att fokusera mer resurser på att tillhandahålla bättre tjänster istället för att rekrytera nya användare. Tidigare publicerad forskning om att förutsäga användarbortfall bortser från tid på dygnet och tidsvariationer för loggad användaraktivitet genom val av förbehandlingsmetoder eller variabelselektion. Den här avhandlingen undersöker empiriskt de praktiska fördelarna med att inkludera information om tidsvariabler innefattande tid på dygnet och tidsvariation för binär förutsägelse av användarbortfall genom att träna klassificerare på data förbehandlat på olika sätt. Två förbehandlingsmetoder används, en baserad på tidssorterade loggar (loggnivå) och den andra på packade aggregeringar (aggregerat) utökad med framtagna tidsvariabler. Inklusionen av tidsvariablerna utvärderades genom att träna och utvärdera en uppsättning MLklassificerare med de olika tidsvariablerna på en verklig datamängd från en digital medicinskteknisk produkt. ANNs, RFs, DTs och naiva tillvägagångssätt tillämpades och jämfördes på den aggregerade datamängden med och utan tidsvariationsvariablerna och på datamängden på loggnivå. Klassificerarna jämfördes med bland annat AUC, PPV och TPR. PPV betygsätter algoritmerna efter träffsäkerhet bland den positivt märkta klassen och TPR utvärderar hur stor del av den positiva klassen som identifierats medan AUC är ett mått av klassificerarnas allmänna prestanda. Resultaten visar ett betydande värde av att inkludera tidsvariationsvariablerna överlag och i synnerhet att klassificerarna presterade bättre på datauppsättningen på loggnivå. Ett ANN tränad på tidssorterade loggar presterar bäst följt av en RF på samma datamängd.

Place, publisher, year, edition, pages
2023. , p. 75
Series
TRITA-EECS-EX ; 2023:834
Keywords [en]
User churn, Customer attrition, Artificial neural networks, Log-level analysis, Random forests, Decision trees
Keywords [sv]
Användarbortfall, Kundbortfall, Artificiella neurala nätverk, logganalys, Slumpskogar, Beslutsträd
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-343005OAI: oai:DiVA.org:kth-343005DiVA, id: diva2:1834191
External cooperation
Evira AB
Supervisors
Examiners
Available from: 2024-02-06 Created: 2024-02-02 Last updated: 2024-02-06Bibliographically approved

Open Access in DiVA

fulltext(1846 kB)369 downloads
File information
File name FULLTEXT01.pdfFile size 1846 kBChecksum SHA-512
56563ff32fc51ffa008a6d0614499c18cbeed583e8f7c0554db1f86cbeefc6506672ce3c050d6a08ebb6deb14e74e5cf4220374f27b340745d79b8c998254ac3
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 369 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 186 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf