In this paper, we solve the inter-agent collision avoidance problem in an arbitrary n−dimensional Euclidean space using reciprocal safety velocity cones (RSVCs). We propose a decentralized feedback control strategy that guarantees simultaneously asymptotic stabilization to a reference and collision avoidance. Our algorithm is purely decentralized in the sense that each agent uses only local information about its neighbouring agents. Moreover, the proposed solution can be implemented using only inter-agent bearing measurements. Therefore, the algorithm is a sensor-based control strategy which is practically implementable using a wide range of sensors such as vision systems and range scanners. Simulation results in a two dimensional environment cluttered with agents shows that the number of possible deadlocks is marginal and decrease with the decrease in the clutteredness of the workspace.
QC 20240209
Part of ISBN 9781713872344