kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
RF Energy Harvesting for Zero-Energy Devices and Reconfigurable Intelligent Surfaces
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS.ORCID iD: 0000-0003-2834-0317
2024 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
RF energiutvinning för nollenergienheter och omkonfigurerbara intelligenta ytor (Swedish)
Abstract [en]

The growth of Internet of Things (IoT) networks has made battery replacement in IoT devices increasingly challenging. This issue is particularly pronounced in scenarios with a large number of IoT devices, in locations where IoT devices are difficult to access, or when frequent replacement is necessary. The risk of losing or forgetting some IoT devices also exists, leading to a risk of hazardous chemical leakage and e-waste in nature. Radio Frequency(RF) wireless power transfer (WPT) offers an alternative solution for powering these devices. Moreover, it has been observed that the receivers absorb less than one-millionth of the transmitter energy while surrounding objects absorb the remainder. This situation opens up the possibility of leveraging existing wireless infrastructures, such as base stations (BSs), to charge IoT devices. In this thesis, we focus on analyzing the feasibility and limitations of battery-less operation of IoT devices using RF WPT technology, along with energy harvesting (EH) from existing wireless communication infrastructure. We explore both indoor and outdoor scenarios for powering IoT devices. Initially, we consider an outdoor environment where an IoT device periodically harvests energy from existing BSs and transmits a data packet related to sensor measurement. We analyze the coverage range of energy harvesting from a BS for powering IoT devices, which shows a tradeoff between the coverage range and the rate of sensor measurements. Additionally, we compare the operational domain in terms of the range and measurement rate for WPT and battery-powered technologies. Furthermore, we consider the coverage probability for a multi-site scenario, which is the likelihood that a randomly allocated IoT device harvests enough power to enable its operation. We derive an expression for this probability at a random location in terms of harvesting sufficient power for IoT device operation at a given measurement rate. Next, we consider the remote powering of IoT devices inside an aircraft. Wired sensors add weight and maintenance costs to the aircraft. Although replacing data cables with wireless communication reduces costs and simplifies deployment, providing power cables for the sensors remains challenging. We assume fixed locations for IoT devices inside an aircraft. The goal is to minimize the number of WPT transmitters for a given cabin geometry and IoT device duty cycles. We address WPT system design under channel uncertainties through robust optimization. Following this, we turn our attention to energy harvesting at a reconfigurable intelligent surface (RIS). The potential benefits of using RIS compared to traditional relays when it comes to improving wireless coverage have been debated in previous works, under the assumption that both technologies have a wired power supply. The comparison would be entirely different if the RIS can become self-sustaining, which is not possible for relays. Therefore, we explore energy harvesting for RIS, proposing an algorithm for phase adjustment to maximize energy harvesting from RF sources based on power measurements. Lastly, we explore the charging of zero-energy devices (ZEDs) via a RIS. Mitigating the path loss in WPT requires large antenna arrays, which leads to increased hardware complexity, as it demands an RF chain per antenna element. Alternatively, RIS offers high beamforming gain with simpler hardware. Therefore, we consider RIS-assisted RF charging of ZEDs. We develop dynamic algorithms for battery-aware and queue-aware scenarios, adjusting RIS phases and transmission power to meet the requirements.

Abstract [sv]

Ökningen av antalet Internet of Things (IoT)-nätverk har gjort batteri-byte i IoT-enheter alltmer utmanande. Detta problem är särskilt besvärligt i scenarier med ett stort antal IoT-enheter, på platser där IoT-enheter är svåra att komma åt, eller när frekventa batteribyten är nödvändiga. Risken att förlora eller glömma bort vissa IoT-enheter finns också, vilket leder till en risk för farligt kemiskt läckage och elektronikskrot i naturen. Trådlös energiöverföring(eng. wireless power transfer, WPT) via radiofrekvens-signaler erbjuder en alternativ lösning för att strömförsörja dessa enheter. När en trådlösa sändare skickar signaler når mindre än en miljondel av energin till de tilltänkta mottagarna,medan resten absorberas av omgivningen. Denna situation skapar möjligheten att utnyttja befintlig trådlös infrastruktur, såsom basstationer,för att ladda IoT-enheter med WPT-teknik. I denna avhandling fokuserar vi på att analysera genomförbarheten och begränsningarna av batterilös drift av IoT-enheter med radiofrekvens-WPT-teknologi, tillsammans med energi utvinningfrån befintlig trådlös kommunikationsinfrastruktur. Vi utforskar energiförsörjning av IoT-enheter både i inomhus- och utomhusscenarier.

Först utforskar vi en utomhusmiljö där en IoT-enhet periodiskt skördar energi från befintliga basstationers signaler och använder den till att sända datapaket relaterade till sensormätningar. Vi analyserar täckningsområdet runten basstation för energiutvinning, vilket visar en avvägning mellan räckvidd och sensormätningens frekvens. Vi jämför WPT-lösningen med batteridrivna teknologier. Därefter analyserar vi täckningssannolikheten i ett fall medmånga basstationer. Detta är sannolikheten att en slumpmässigt placeradIoT-enhet kan skörda tillräckligt med kraft för sin drift. Vi härleder ett uttryck för denna sannolikhet för en given mätningfrekvens.

Därefter analyserar vi energiförsörjning till IoT-enheter inuti ett flygplan.Kabelanslutna sensorer adderar vikt och underhållskostnader till flygplan.Även om kostnaderna minskar ifall datakablar ersätts med trådlös kommunikation så krävs fortfarande strömkablar, men dessa kan eventuellt ersättasmed WPT. Vi antar att IoT-enheterna har förutbestämda placeringar inuti ett flygplan. Målet är att minimera antalet WPT-sändare med hänsyn till kabinens geometri och IoT-enheternas driftcykler. Vi adresserar WPT systemdesign under kanalosäkerheter genom robust optimering.

Efter detta vänder vi vår uppmärksamhet mot energiutvinning för en omkonfigurerbar intelligent yta (eng. reconfigurable intelligent surface, RIS). De potentiella fördelarna med RIS jämfört med traditionella reläer när det gäller att förbättra trådlös täckning har debatterats i tidigare arbeten, under antagandet att båda teknikerna är kabelanslutna till en strömkälla. Jämförelsen blir en annan ifall vi kan göra RIS självförsörjande, eftersom detta inte är möjligt för reläer. Därför utforskar vi trådlös energiutvinning för RIS och föreslår en algoritm för fasjustering för att maximera energiutvinning från radiofrekvens-signaler baserat på energimätningar.

Slutligen utforskar vi laddning av nollenergienheter (eng. zero-energy devices,ZED) med stöd av en RIS som reflekterar signaler mot enheterna. Föratt motverka utbredningsförlusterna i WPT krävs traditionellt stora gruppantennerpå basstationen, vilket leder till ökad hårdvarukomplexitet, eftersomivdet kräver en radio per antennelement. Alternativt erbjuder RIS hög lobformningsvinstmed enklare hårdvara. Därför analyserar vi RIS-assisterad WPTladdningav ZED. Vi utvecklar dynamiska algoritmer för batterimedvetna ochkömedvetna scenarier där vi justerar RIS-faser och sändningseffekten för attuppfylla kraven.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. , p. xx, 134
Series
TRITA-EECS-AVL ; 2024:15
Keywords [en]
Electronic waste, energy harvesting, Internet of Things, optimization, phased array, reconfigurable intelligent surfaces, stochastic geometry, wireless power transfer, wireless sensor networks, zero-energy devices.
Keywords [sv]
Elektronikskrot, energiutvinning, sakernas internet, optimering, fasstyrda antenner, omkonfigurerbara intelligenta ytor, stokastisk geometri, trådlös kraftöverföring, trådlösa sensornätverk, nollenergienheter.
National Category
Communication Systems
Research subject
Information and Communication Technology
Identifiers
URN: urn:nbn:se:kth:diva-343226ISBN: 978-91-8040-839-4 (print)OAI: oai:DiVA.org:kth-343226DiVA, id: diva2:1836386
Public defence
2024-03-06, https://kth-se.zoom.us/j/67657421796, Ka-Sal B, Electrum, Kistagången 16, plan 2, Kista, Stockholm, 13:00
Opponent
Supervisors
Note

QC 20240214

Available from: 2024-02-14 Created: 2024-02-08 Last updated: 2024-02-29Bibliographically approved
List of papers
1. Range Limits of Energy Harvesting from a Base Station for Battery-Less Internet-of-Things Devices
Open this publication in new window or tab >>Range Limits of Energy Harvesting from a Base Station for Battery-Less Internet-of-Things Devices
2022 (English)In: Ieee International Conference On Communications (Icc 2022), Institute of Electrical and Electronics Engineers (IEEE) , 2022, p. 153-158Conference paper, Published paper (Refereed)
Abstract [en]

Wireless power transfer (WPT) is an alternative technology to conventional batteries for powering Internet of things (IoT) devices. WPT is especially beneficial in situations when battery replacement is infeasible or expensive. It can also reduce battery-related e-waste. In this paper, we analyze the limits of adopting WPT technology for remote powering of IoT devices. We assume that an IoT device periodically harvests energy from a base station (BS) and transmits a data packet related to the sensor measurement under shadow fading channel conditions. Our goal is to characterize the epsilon-coverage range, where epsilon is the probability of the coverage. Our analysis shows a tradeoff between the coverage range and the rate of sensor measurements, where the maximal epsilon-coverage range is achieved as the sensor measurement rate approaches zero. We demonstrate that the weighted sum of the sleep power consumption and the harvesting sensitivity power of an IoT device limits the maximal e-coverage range. Beyond that range, the IoT device cannot harvest enough energy to operate. The desired rate of the sensor measurements also significantly impacts the epsilon-coverage range. Our results suggest that for an IoT device designed using current technology, the maximal 0.95-coverage range is in the order of 120 m. When high measurement rates are required, the coverage range drops to 50-100 m. Compared to battery-powered IoT devices, WPT is well-suited for medium-range applications plus when battery replacement is costly.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022
Series
IEEE International Conference on Communications, ISSN 1550-3607
Keywords
Electronic waste, Energy harvesting, Internet of things, transceivers, wireless power transfer, wireless sensor networks
National Category
Communication Systems
Identifiers
urn:nbn:se:kth:diva-322312 (URN)10.1109/ICC45855.2022.9839237 (DOI)000864709900026 ()2-s2.0-85137264778 (Scopus ID)
Conference
IEEE International Conference on Communications (ICC), MAY 16-20, 2022, Seoul, SOUTH KOREA
Note

Part of proceedings: ISBN 978-1-5386-8347-7

Not duplicate with DiVA 1638446

QC 20221212

Available from: 2022-12-12 Created: 2022-12-12 Last updated: 2024-02-08Bibliographically approved
2. Multi-Site Energy Harvesting for Battery-Less Internet-of-Things Devices: Prospects and Limits
Open this publication in new window or tab >>Multi-Site Energy Harvesting for Battery-Less Internet-of-Things Devices: Prospects and Limits
2022 (English)In: 2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), Institute of Electrical and Electronics Engineers (IEEE) , 2022Conference paper, Published paper (Refereed)
Abstract [en]

Conventional Internet of things (IoT) devices are powered by batteries. However, batteries pose a risk of e-waste and chemical leakage to the environment. An alternative way to power remote IoT devices is to harvest ambient RF energy. It is especially beneficial when battery replacement is costly and could enable large-scale IoT deployments at net-zero energy cost. In this paper, we assume that the IoT devices periodically harvest energy from multiple surrounding base stations (BSs) and use the harvested energy to take sensor measurements and transmit related data packets. We propose an approximate method to analyze the feasibility of this approach in terms of which measurement rates can be supported. To this end, we assume a Poisson point process for the locations of the BSs. We derive mathematical expressions for the coverage probability (i.e., the probability that an IoT device harvests enough energy to operate at a given measurement rate) and the required BS site density in the presence of channel uncertainties, blockage, and harvesting nonlinearities. We derive the parameters of a Gamma distribution to approximate the distribution of the harvested power. For a coverage probability of 0.5, we derive a simplified approximate expression for the required site density that closely describes the one obtained empirically.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022
Series
IEEE Vehicular Technology Conference Proceedings, ISSN 2577-2465
Keywords
Electronic waste, energy harvesting, Internet of things, stochastic geometry, wireless sensor networks
National Category
Communication Systems
Identifiers
urn:nbn:se:kth:diva-324873 (URN)10.1109/VTC2022-Fall57202.2022.10013005 (DOI)000927580600309 ()2-s2.0-85146981412 (Scopus ID)
Conference
IEEE 96th Vehicular Technology Conference (VTC-Fall), SEP 26-29, 2022, London, ECUADOR
Note

QC 20230320

Available from: 2023-03-20 Created: 2023-03-20 Last updated: 2024-02-08Bibliographically approved
3. Wireless Power Transfer for Aircraft IoT Applications: System Design and Measurements
Open this publication in new window or tab >>Wireless Power Transfer for Aircraft IoT Applications: System Design and Measurements
Show others...
2021 (English)In: IEEE Internet of Things Journal, ISSN 2327-4662, Vol. 8, no 15, p. 11834-11846Article in journal (Refereed) Published
Abstract [en]

Sensors currently deployed on board have wired connectivity, which increases weight and maintenance costs for aircraft. Removing cables for wireless communications of sensors on board alleviates the cost, however, the powering of sensors becomes a challenge inside aircraft. Wireless power transfer (WPT) via radio-frequency (RF) signals is an emerging solution to remotely power sensors for battery-less operation with long-lived capacitors. In this article, we design a WPT system for aircraft IoT-type applications, including low data rate inside (LI) sensors by determining the number, location, and tilt angles of WPT transmitters given constraints based on the cabin geometry and duty cycle of the sensors. We formulate a robust optimization problem to address the WPT system design under channel uncertainties. We also derive an equivalent integer linear programming and solve that for an optimal deployment to satisfy the duty cycle requirements of LI sensors. We perform experiments inside the cabin to validate the wireless avionics intracommunications channel model. Our simulations demonstrate the feasibility of 90% robust design with 14 WPT transmitters for duty cycles less than 0.1% while keeping the human radiation exposure below the recommended reference value of 4.57 W/m(2).

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2021
Keywords
Sensors, Aircraft, Wireless communication, Radio frequency, Wireless sensor networks, Internet of Things, Atmospheric modeling, Integer programming, optimization, radio-frequency (RF), wireless power transfer (WPT), wireless sensor network
National Category
Communication Systems
Identifiers
urn:nbn:se:kth:diva-299621 (URN)10.1109/JIOT.2021.3072505 (DOI)000678340800010 ()2-s2.0-85104270220 (Scopus ID)
Note

QC 20210813

Available from: 2021-08-13 Created: 2021-08-13 Last updated: 2024-02-08Bibliographically approved
4. Energy Harvesting Maximization for Reconfigurable Intelligent Surfaces Using Amplitude Measurements
Open this publication in new window or tab >>Energy Harvesting Maximization for Reconfigurable Intelligent Surfaces Using Amplitude Measurements
2023 (English)In: IEEE Transactions on Communications, ISSN 0090-6778, E-ISSN 1558-0857, p. 1-1Article in journal (Refereed) Accepted
Abstract [en]

Energy harvesting can enable a reconfigurable intelligent surface (RIS) to self-sustain its operations without relying on external power sources. In this paper, we consider the problem of energy harvesting for RISs in the absence of coordination with the ambient RF source. We propose a series of sequential phase-alignment algorithms that maximize the received power based on only power measurements. We prove the convergence of the proposed algorithm to the optimal value for the noiseless scenario. However, for the noisy scenario, we propose a linear least squares estimator. We prove that within the class of linear estimators, the optimal set of measurement phases are equally-spaced phases. To evaluate the performance of the proposed method, we introduce a random phase update algorithm as a benchmark. Our simulation results show that the proposed algorithms outperform the random phase update method in terms of achieved power after convergence while requiring fewer measurements per phase update. Using simulations, we show that in a noiseless scenario with a discrete set of possible phase shifts for the RIS elements, the proposed method is sub-optimal, achieving a higher value than the random algorithm but not exactly the maximum feasible value that we obtained by exhaustive search.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
Energy harvesting, Energy harvesting, Hardware, Phase measurement, phased array, Power measurement, Radio frequency, Receivers, reconfigurable intelligent surface, Transmitters, zero-energy devices
National Category
Communication Systems
Identifiers
urn:nbn:se:kth:diva-343217 (URN)10.1109/tcomm.2023.3342234 (DOI)2-s2.0-85167957809 (Scopus ID)
Note

QC 20240209

Available from: 2024-02-08 Created: 2024-02-08 Last updated: 2024-02-09Bibliographically approved
5. Dynamic RF Charging of Zero-Energy Devices via Reconfigurable Intelligent Surfaces
Open this publication in new window or tab >>Dynamic RF Charging of Zero-Energy Devices via Reconfigurable Intelligent Surfaces
(English)Manuscript (preprint) (Other (popular science, discussion, etc.))
National Category
Communication Systems
Identifiers
urn:nbn:se:kth:diva-343223 (URN)
Note

QC 20240213

Available from: 2024-02-08 Created: 2024-02-08 Last updated: 2024-02-13Bibliographically approved
6. Dynamic Queue-Aware RF Charging of Zero-Energy Devices via Reconfigurable Surfaces
Open this publication in new window or tab >>Dynamic Queue-Aware RF Charging of Zero-Energy Devices via Reconfigurable Surfaces
(English)Manuscript (preprint) (Other (popular science, discussion, etc.))
National Category
Communication Systems
Identifiers
urn:nbn:se:kth:diva-343224 (URN)
Note

QC 20240213

Available from: 2024-02-08 Created: 2024-02-08 Last updated: 2024-02-13Bibliographically approved

Open Access in DiVA

Summary(4133 kB)737 downloads
File information
File name FULLTEXT01.pdfFile size 4133 kBChecksum SHA-512
eb6e2a05381148128aa2cd203620917fb428c93b67c0e6037aaa8e6052c8390a30de53708ac34c7485a163ea3d301930bef7277a52d658f33f18d5c514e9bf14
Type fulltextMimetype application/pdf

Authority records

Tavana, Morteza

Search in DiVA

By author/editor
Tavana, Morteza
By organisation
Communication Systems, CoS
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 737 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1616 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf