kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Highway Traffic Forecasting with the Diffusion Model: An Image-Generation Based Approach
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Vägtrafikprognos med Diffusionsmodellen : En bildgenereringsbaserad metod (Swedish)
Abstract [en]

Forecasting of highway traffic is a common practice for real traffic information system, and is of vital importance to traffic management and control on highways. As a typical time-series forecasting task, we want to propose a deep learning model to map the historical sensory traffic values (e.g., speed, flow) to future traffic forecasts. Prevailing traffic forecasting methods focus on the graph representation of the urban road. However, compared to the dense connectivity of urban road networks, highway traffic flows normally run on road segments of serial topology. This indicates that the highway traffic flows do not have the same type of spatial interaction, therefore motivating us to resort to a new forecasting paradigm. While traffic patterns can be intuitively represented by spatial-temporal (ST) images, this study transforms the traffic forecasting task into the conditional image generation task. Our approach explores the inherent properties of ST-images from the perspectives of physical meaning and traffic dynamics. An innovative deep learning based architecture is designed to process the ST-image, and a diffusion model is trained to obtain traffic forecasts by generating future ST-image based on the historical STimages. We demonstrate the effectiveness of the architecture in processing ST-image through ablation studies and the effectiveness of the model through comparison with popular baseline models, i.e., LSTM and T-GCN.

Abstract [sv]

Prognos av vägtrafik är en vanlig praxis för riktiga trafikinformationssystem och är av vital betydelse för trafikhantering och kontroll på motorvägar. Som en typisk tidsserieförutsägelseuppgift vill vi föreslå en djupinlärningsmodell för att kartlägga historiska sensoriska trafikvärden (t.ex. hastighet, flöde) till framtida trafikprognoser. Rådande trafikprognosmetoder fokuserar på grafrepresentationen av stadsvägar. Jämfört med den täta anslutningen av stadsvägnät, löper motorvägstrafik normalt på vägsegment med seriell topologi. Detta indikerar att motorvägstrafikflöden inte har samma typ av rumslig interaktion, vilket motiverar oss att använda en ny prognosparadigm. Medan trafikmönster intuitivt kan representeras av spatial-temporala (ST) bilder, omvandlar denna studie trafikprognosuppgiften till en uppgift för betingad bildgenerering. Vår metod utforskar de inneboende egenskaperna hos ST-bilder från perspektiven fysisk betydelse och trafikdynamik. En innovativ djupinlärningsbaserad arkitektur är utformad för att behandla STbilden, och en diffusionsmodell tränas för att erhålla trafikprognoser genom att generera framtida ST-bilder baserat på historiska ST-bilder. Vi demonstrerar effektiviteten hos arkitekturen genom avbränningsstudier och modellens effektivitet genom jämförelse med populära baslinjemodeller, dvs. LSTM och T-GCN.

Place, publisher, year, edition, pages
2023. , p. 55
Series
TRITA-EECS-EX ; 2023:860
Keywords [en]
Diffusion model, Traffic forecasting, Generative model, Image processing, Spatial temporal modelling
Keywords [sv]
Diffusionsmodell, Trafikprognos, Generativ modell, Bildbehandling, Rumsligtemporal modellering
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-343347OAI: oai:DiVA.org:kth-343347DiVA, id: diva2:1836833
Subject / course
Computer Science
Educational program
Master of Science - Computer Science
Supervisors
Examiners
Available from: 2024-02-13 Created: 2024-02-12 Last updated: 2024-02-13Bibliographically approved

Open Access in DiVA

fulltext(12426 kB)717 downloads
File information
File name FULLTEXT01.pdfFile size 12426 kBChecksum SHA-512
f53d50fd9ee051e4a704ce7ff06c0f655536ff16e2f02ddde9a589b704c3f5dada55fbb4fcee6d80ed1677c7c732646999098b050ff32695b98c1404e35c73bd
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 717 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 429 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf