kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Register Caching for Energy Efficient GPGPU Tensor Core Computing
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Registrera cachelagring för energieffektiv GPGPU Tensor Core Computing (Swedish)
Abstract [en]

The General-Purpose GPU (GPGPU) has emerged as the predominant computing device for extensive parallel workloads in the fields of Artificial Intelligence (AI) and Scientific Computing, primarily owing to its adoption of the Single Instruction Multiple Thread architecture, which not only provides a wealth of thread context but also effectively hide the latencies exposed in the single threads executions. As computational demands have evolved, modern GPGPUs have incorporated specialized matrix engines, e.g., NVIDIA’s Tensor Core (TC), in order to deliver substantially higher throughput for dense matrix computations compared with traditional scalar or vector architectures. Beyond mere throughput, energy efficiency is a pivotal concern in GPGPU computing. The register file is the largest memory structure on the GPGPU die and typically accounts for over 20% of the dynamic power consumption. To enhance energy efficiency, GPGPUs incorporate a technique named register caching borrowed from the realm of CPUs. Register caching captures temporal locality among register operands to reduce energy consumption within a 2- level register file structure. The presence of TC raises new challenges for Register Cache (RC) design, as each matrix instruction applies intensive operand delivering traffic on the register file banks. In this study, we delve into the RC design trade-offs in GPGPUs. We undertake a comprehensive exploration of the design space, encompassing a range of workloads. Our experiments not only reveal the basic design considerations of RC but also clarify that conventional caching strategies underperform, particularly when dealing with TC computations, primarily due to poor temporal locality and the substantial register operand traffic involved. Based on these findings, we propose an enhanced caching strategy featuring a look-ahead allocation policy to minimize unnecessary cache allocations for the destination register operands. Furthermore, to leverage the energy efficiency of Tensor Core computing, we highlight an alternative instruction scheduling framework for Tensor Core instructions that collaborates with a specialized caching policy, resulting in a remarkable reduction of up to 50% in dynamic energy consumption within the register file during Tensor Core GEMM computations.

Abstract [sv]

Den allmänna ändamålsgrafikprocessorn (GPGPU) har framträtt som den dominerande beräkningsenheten för omfattande parallella arbetsbelastningar inom områdena för artificiell intelligens (AI) och vetenskaplig beräkning, huvudsakligen tack vare dess antagande av arkitekturen för enkel instruktion, flera trådar (Single Instruction Multiple Thread), vilket inte bara ger en mängd trådcontext utan också effektivt döljer de latenser som exponeras vid enskilda trådars utförande. När beräkningskraven har utvecklats har moderna GPGPU:er inkorporerat specialiserade matrismotorer, t.ex., NVIDIAs Tensor Core (TC), för att leverera avsevärt högre genomströmning för täta matrisberäkningar jämfört med traditionella skalär- eller vektorarkitekturer. Bortom endast genomströmning är energieffektivitet en central oro inom GPGPUberäkning. Registerfilen är den största minnesstrukturen på GPGPU-dien och svarar vanligtvis för över 20% av den dynamiska effektförbrukningen För att förbättra energieffektiviteten inkorporerar GPGPU:er en teknik vid namn registercachning, lånad från CPU-världen. Registercachning fångar temporal lokalitet bland registeroperanderna för att minska energiförbrukningen inom en 2-nivåers registerfilstruktur. Närvaron av TC innebär nya utmaningar för Register Cache (RC)-design, eftersom varje matrisinstruktion genererar intensiv operandleverans på registerfilbankarna. I denna studie fördjupar vi oss i RC-designavvägandena i GPGPU:er. Vi genomför en omfattande utforskning av designutrymmet, som omfattar olika arbetsbelastningar. Våra experiment avslöjar inte bara de grundläggande designövervägandena för RC utan klargör också att konventionella cachestrategier underpresterar, särskilt vid hantering av TC-beräkningar, främst på grund av dålig temporal lokalitet och den betydande trafiken med registeroperand. Baserat på dessa resultat föreslår vi en förbättrad cachestrategi med en look-ahead-alloceringspolicy för att minimera onödiga cacheallokeringar för destinationens registeroperand. Dessutom, för att dra nytta av energieffektiviteten hos Tensor Core-beräkning, belyser vi en alternativ instruktionsplaneringsram för Tensor Core-instruktioner som samarbetar med en specialiserad cachelayout, vilket resulterar i en anmärkningsvärd minskning av upp till 50% i dynamisk energiförbrukning inom registerfilen under Tensor Core GEMM-beräkningar.

Place, publisher, year, edition, pages
2023. , p. 69
Series
TRITA-EECS-EX ; 2023:891
Keywords [en]
Computer Architecture, GPGPU, Tensor Core, GEMM, Energy Efficiency, Register File, Cache, Instruction Scheduling
Keywords [sv]
Datorarkitektur, GPGPU, Tensor Core, GEMM, energieffektivitet, registerfil, cache, instruktionsschemaläggning
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-343516OAI: oai:DiVA.org:kth-343516DiVA, id: diva2:1838155
Educational program
Master of Science - Embedded Systems
Supervisors
Examiners
Available from: 2024-02-16 Created: 2024-02-15 Last updated: 2024-02-16Bibliographically approved

Open Access in DiVA

fulltext(6237 kB)697 downloads
File information
File name FULLTEXT01.pdfFile size 6237 kBChecksum SHA-512
14dfae95cb80d0fd771e5f0c83372496acacba36be3bba197abfe4e213e481750b0c8488c9aa4f87a1c8f64670ed6b89df475e41762dd09f87b6ff447663e545
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 697 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 406 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf