kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Counterfactual and Causal Analysis for AI-based Modulation and Coding Scheme Selection
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Kontrafaktisk och orsaksanalys för AI-baserad modulerings- och kodningsval (Swedish)
Abstract [en]

Artificial Intelligence (AI) has emerged as a transformative force in wireless communications, driving innovation to address the complex challenges faced by communication systems. In this context, the optimization of limited radio resources plays a crucial role, and one important aspect is the Modulation and Coding Scheme (MCS) selection. AI solutions for MCS selection have been predominantly characterized as black-box models, which suffer from limited explainability and consequently hinder trust in these algorithms. Moreover, the majority of existing research primarily emphasizes enhancing explainability without concurrently improving the model’s performance which makes performance and explainability a trade-off. This work aims to address these issues by employing eXplainable AI (XAI), particularly counterfactual and causal analysis, to increase the explainability and trustworthiness of black-box models. We propose CounterFactual Retrain (CF-Retrain), the first method that utilizes counterfactual explanations to improve model performance and make the process of performance enhancement more explainable. Additionally, we conduct a causal analysis and compare the results with those obtained from an analysis based on the SHapley Additive exPlanations (SHAP) value feature importance. This comparison leads to the proposal of novel hypotheses and insights for model optimization in future research. Our results show that employing CF-Retrain can reduce the Mean Absolute Error (MAE) of the black-box model by 4% while utilizing only 14% of the training data. Moreover, increasing the amount of training data yields even more pronounced improvements in MAE, providing a certain level of explainability. This performance enhancement is comparable to or even superior to using a more complex model. Furthermore, by introducing causal analysis to the mainstream SHAP value feature importance, we provide a novel hypothesis and explanation of feature importance based on causal analysis. This approach can serve as an evaluation criterion for assessing the model’s performance.

Abstract [sv]

Artificiell intelligens (AI) har dykt upp som en transformativ kraft inom trådlös kommunikation, vilket driver innovation för att möta de komplexa utmaningar som kommunikationssystem står inför. I detta sammanhang spelar optimeringen av begränsade radioresurser en avgörande roll, och en viktig aspekt är valet av Modulation and Coding Scheme (MCS). AI-lösningar för val av modulering och kodningsschema har övervägande karaktäriserats som black-box-modeller, som lider av begränsad tolkningsbarhet och följaktligen hindrar förtroendet för dessa algoritmer. Dessutom betonar majoriteten av befintlig forskning i första hand att förbättra förklaringsbarheten utan att samtidigt förbättra modellens prestanda, vilket gör prestanda och tolkningsbarhet till en kompromiss. Detta arbete syftar till att ta itu med dessa problem genom att använda XAI, särskilt kontrafaktisk och kausal analys, för att öka tolkningsbarheten och pålitligheten hos svarta-box-modeller. Vi föreslår CF-Retrain, den första metoden som använder kontrafaktiska förklaringar för att förbättra modellens prestanda och göra processen med prestandaförbättring mer tolkningsbar. Dessutom gör vi en orsaksanalys och jämför resultaten med de som erhålls från en analys baserad på värdeegenskapens betydelse. Denna jämförelse leder till förslaget av nya hypoteser och insikter för modelloptimering i framtida forskning. Våra resultat visar att användning av CF-Retrain kan minska det genomsnittliga absoluta felet för black-box-modellen med 4% samtidigt som man använder endast 14% av träningsdata. Dessutom ger en ökning av mängden träningsdata ännu mer uttalade förbättringar av Mean Absolute Error (MAE), vilket ger en viss grad av tolkningsbarhet. Denna prestandaförbättring är jämförbar med eller till och med överlägsen att använda en mer komplex modell. Dessutom, genom att introducera kausal analys till de vanliga Shapley-tillsatsförklaringarna värdesätter egenskapens betydelse, ger vi en ny hypotes och tolkning av egenskapens betydelse baserad på kausalanalys. Detta tillvägagångssätt kan fungera som ett utvärderingskriterium för att bedöma modellens prestanda.

Place, publisher, year, edition, pages
2023. , p. 37
Series
TRITA-EECS-EX ; 2023:892
Keywords [en]
Explainable Artificial Intelligence, Counterfactual, Causal Analysis, Shapley Additive Explanations, Modulation and Coding Scheme
Keywords [sv]
Förklarlig artificiell intelligens, kontrafaktisk analys, orsaksanalys, Shapley tillsatsförklaringar, modulerings och kodningsschema
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-343517OAI: oai:DiVA.org:kth-343517DiVA, id: diva2:1838160
External cooperation
Huawei Technologies Sweden AB, Stockholm, Sweden
Subject / course
Communications Systems
Educational program
Master of Science -Communication Systems
Supervisors
Examiners
Available from: 2024-02-16 Created: 2024-02-15 Last updated: 2024-02-16Bibliographically approved

Open Access in DiVA

fulltext(1185 kB)385 downloads
File information
File name FULLTEXT01.pdfFile size 1185 kBChecksum SHA-512
2d31c8b4a7ceec17152cd474c1b2314fa7461e634d5bb8fce9fdfd642fafc504c0a59b8a63984d2b3ce3afdca1b604aba841d51628e591e57d5ff4250f2a0cb8
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 385 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 566 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf