kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Edge Compute Offloading Strategies using Heuristic and Reinforcement Learning Techniques.
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The emergence of 5G alongside the distributed computing paradigm called Edge computing has prompted a tremendous change in the industry through the opportunity for reducing network latency and energy consumption and providing scalability. Edge computing extends the capabilities of users’ resource-constrained devices by placing data centers at the edge of the network. Computation offloading enables edge computing by allowing the migration of users’ tasks to edge servers. Deciding whether it is beneficial for a mobile device to offload a task and on which server to offload, while environmental variables, such as availability, load, network quality, etc., are changing dynamically, is a challenging problem that requires careful consideration to achieve better performance. This project focuses on proposing lightweight and efficient algorithms to take offloading decisions from the mobile device perspective to benefit the user. Subsequently, heuristic techniques have been examined as a way to find quick but sub-optimal solutions. These techniques have been combined with a Multi-Armed Bandit algorithm, called Discounted Upper Confidence Bound (DUCB) to take optimal decisions quickly. The findings indicate that these heuristic approaches cannot handle the dynamicity of the problem and the DUCB provides the ability to adapt to changing circumstances without having to keep adding extra parameters. Overall, the DUCB algorithm performs better in terms of local energy consumption and can improve service time most of the times.

Abstract [sv]

Utvecklingen av 5G har skett parallellt med det distribuerade beräkningsparadigm som går under namnet Edge Computing. Lokala datacenter placerade på kanten av nätverket kan reducera nätverkslatensen och energiförbrukningen för applikationer. Exempelvis kan användarenheter med begränsade resurser ges utökande möjligheter genom avlastning av beräkningsintensiva uppgifter. Avlastningen sker genom att migrera de beräkningsintensiva uppgifterna till en dator i datacentret på kanten. Det är dock inte säkert att det alltid lönar sig att avlasta en beräkningsintensiv uppgift från en enhet till kanten. Detta måste avgöras från fall till fall. Att avgöra om och när det lönar sig är ett svårt problem då förutsättningar som tillgänglighet, last, nätverkskvalitét, etcetera hela tiden varierar. Fokus i detta projekt är att identifiera enkla och effektiva algoritmer som kan avgöra om det lönar sig för en användare att avlasta en beräkningsintensiv uppgift från en mobil enhet till kanten. Heuristiska tekniker har utvärderats som en möjlig väg att snabbt hitta lösningar även om de råkar vara suboptimala. Dessa tekniker har kombinerats med en flerarmad banditalgoritm (Multi-Armed Bandit), kallad Discounted Upper Confidence Bound (DUCB), för att ta optimala beslut snabbt. Resultaten indikerar att dessa heuristiska tekniker inte kan hantera de dynamiska förändringar som hela tiden sker samtidigt som DUCB kan anpassa sig till dessa förändrade omständigheter utan att man måste addera extra parametrar. Sammantaget, ger DUCM-algoritmen bättre resultat när det gäller lokal energikonsumtion och kan i de flesta fallen förbättra tiden för tjänsten.

Place, publisher, year, edition, pages
2023. , p. 72
Series
TRITA-EECS-EX ; 2023:240
Keywords [en]
Computation offloading, Edge Computing, Heuristics, Multi-armed bandit
Keywords [sv]
Beräkningsavlastning, Heuristics, Kantberäkning, Flerarmad bandit-algoritm
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-343539OAI: oai:DiVA.org:kth-343539DiVA, id: diva2:1838521
External cooperation
Ericsson AB
Supervisors
Examiners
Available from: 2024-02-19 Created: 2024-02-16 Last updated: 2024-02-19Bibliographically approved

Open Access in DiVA

fulltext(1643 kB)418 downloads
File information
File name FULLTEXT01.pdfFile size 1643 kBChecksum SHA-512
b49fc552cced186a34f059d3b908e9d5f7a63d90283f5b9943059faa5092650ca2484f09442d614c260118a60453869034aadd13b0aaafe486464df1949036bc
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 419 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 374 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf