kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hardware Distortion-Aware Beamforming for MIMO Systems
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS.
2024 (English)Licentiate thesis, comprehensive summary (Other academic)Alternative title
Hårdvaruförvrängningsmedveten strålformning för MIMO-system (Swedish)
Abstract [en]

In the upcoming era of communication systems, there is an anticipated shift towards using lower-grade hardware components to optimize size, cost, and power consumption. This shift is particularly beneficial for multiple-input multiple-output (MIMO) systems and internet-of-things devices, which require numerous components and extended battery lifes. However, using lower-grade components introduces impairments, including various non-linear and time-varying distortions affecting communication signals. Traditionally, these distortions have been treated as additional noise due to the lack of a rigorous theory. This thesis explores new perspective on how distortion structure can be exploited to optimize communication performance. We investigate the problem of distortion-aware beamforming in various scenarios. 

In the first part of this thesis, we focus on systems with limited fronthaul capacity. We propose an optimized linear precoding for advanced antenna systems (AAS) operating at a 5G base station (BS) within the constraints of a limited fronthaul capacity, modeled by a quantizer. The proposed novel precoding minimizes the mean-squared error (MSE) at the receiver side using a sphere decoding (SD) approach. 

After analyzing MSE minimization, a new linear precoding design is proposed to maximize the sum rate of the same system in the second part of this thesis. The latter problem is solved by a novel iterative algorithm inspired by the classical weighted minimum mean square error (WMMSE) approach. Additionally, a heuristic quantization-aware precoding method with lower computational complexity is presented, showing that it outperforms the quantization-unaware baseline. This baseline is an optimized infinite-resolution precoding which is then quantized. This study reveals that it is possible to double the sum rate at high SNR by selecting weights and precoding matrices that are quantization-aware. 

In the third part and final part of this thesis, we focus on the signaling problem in mobile millimeter-wave (mmWave) communication. The challenge of mmWave systems is the rapid fading variations and extensive pilot signaling. We explore the frequency of updating the combining matrix in a wideband mmWave point-to-point MIMO under user equipment (UE) mobility. The concept of beam coherence time is introduced to quantify the frequency at which the UE must update its downlink receive combining matrix. The study demonstrates that the beam coherence time can be even hundreds of times larger than the channel coherence time of small-scale fading. Simulations validate that the proposed lower bound on this defined concept guarantees no more than 50 \% loss of received signal gain (SG).

Abstract [sv]

I den kommande eran av kommunikationssystem finns det en förväntad förändringmot att använda hårdvarukomponenter av lägre kvalitet för att optimera storlek, kostnad och strömförbrukning. Denna förändring är särskilt fördelaktig för MIMO-system(multiple-input multiple-output) och internet-of-things-enheter, som kräver många komponenter och förlängd batteritid. Användning av komponenter av lägre kvalitet medfördock försämringar, inklusive olika icke-linjära och tidsvarierande förvrängningar sompåverkar kommunikationssignaler. Traditionellt har dessa förvrängningar behandlatssom extra brus på grund av avsaknaden av en rigorös teori. Denna avhandling utforskarett nytt perspektiv på hur distorsionsstruktur kan utnyttjas för att optimera kommunikationsprestanda. Vi undersöker problemet med distorsionsmedveten strålformning iolika scenarier.

I den första delen av detta examensarbete fokuserar vi på system med begränsadfronthaulkapacitet. Vi föreslår en optimerad linjär förkodning för avancerade antennsystem (AAS) som arbetar vid en 5G-basstation (BS) inom begränsningarna av en begränsad fronthaulkapacitet, modellerad av en kvantiserare. Den föreslagna nya förkodningen minimerar medelkvadratfelet (MSE) på mottagarsidan med användning av ensfäravkodningsmetod (SD).

Efter att ha analyserat MSE-minimering, föreslås en ny linjär förkodningsdesignför att maximera summahastigheten för samma system i den andra delen av dennaavhandling. Det senare problemet löses av en ny iterativ algoritm inspirerad av denklassiska vägda minsta medelkvadratfel (WMMSE)-metoden. Dessutom presenterasen heuristisk kvantiseringsmedveten förkodningsmetod med lägre beräkningskomplexitet, som visar att den överträffar den kvantiseringsomedvetna baslinjen. Denna baslinje är en optimerad förkodning med oändlig upplösning som sedan kvantiseras. Dennastudie avslöjar att det är möjligt att fördubbla summahastigheten vid hög SNR genomatt välja vikter och förkodningsmatriser som är kvantiseringsmedvetna.

I den tredje delen och sista delen av denna avhandling fokuserar vi på signaleringsproblemet i mobil millimetervågskommunikation (mmWave). Utmaningen medmmWave-system är de snabba blekningsvariationerna och omfattande pilotsignalering.Vi utforskar frekvensen av att uppdatera den kombinerande matrisen i en bredbandsmmWave punkt-till-punkt MIMO under användarutrustning (UE) mobilitet. Konceptet med strålkoherenstid introduceras för att kvantifiera frekvensen vid vilken UE:nmåste uppdatera sin nedlänksmottagningskombinationsmatris. Studien visar att strålkoherenstiden kan vara till och med hundratals gånger större än kanalkoherenstiden försmåskalig fädning. Simuleringar bekräftar att den föreslagna nedre gränsen för dettadefinierade koncept inte garanterar mer än 50 % förlust av mottagen signalförstärkning(SG)

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. , p. 46
Series
TRITA-EECS-AVL ; 2024:16
Keywords [en]
Quantization-aware precoding, limited fronthaul capacity, sum rate maximization, millimeter wave (mmWave), beam coherence time, user equipment (UE) mobility.
Keywords [sv]
Kvantiseringsmedveten förkodning, begränsad fronthaulkapacitet, summahastighetsmaximering, millimetervåg (mmWave), strålkoherens tid, användarutrustning (UE) mobilitet.
National Category
Communication Systems
Research subject
Information and Communication Technology
Identifiers
URN: urn:nbn:se:kth:diva-343548ISBN: 978-91-8040-843-1 (print)OAI: oai:DiVA.org:kth-343548DiVA, id: diva2:1838695
Presentation
2024-03-12, https://kth-se.zoom.us/j/61208208121, Ka-301, Electrum, Kungl. Tekniska högskolan, Kistagången 16, plan 3, Kista, Stockholm, 13:15 (English)
Opponent
Supervisors
Note

QC 20240219

Available from: 2024-02-19 Created: 2024-02-18 Last updated: 2024-02-27Bibliographically approved
List of papers
1. Optimized Precoding for MU-MIMO With Fronthaul Quantization
Open this publication in new window or tab >>Optimized Precoding for MU-MIMO With Fronthaul Quantization
2023 (English)In: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248, Vol. 22, no 11, p. 7102-7115Article in journal (Refereed) Published
Abstract [en]

One of the first widespread uses of multi-user multiple-input multiple-output (MU-MIMO) is in 5G networks, where each base station has an advanced antenna system (AAS) that is connected to the baseband unit (BBU) with a capacity-constrained fronthaul. In the AAS configuration, multiple passive antenna elements and radio units are integrated into a single box. This paper considers precoded downlink transmission over a single-cell MU-MIMO system. We study optimized linear precoding for AAS with a limited-capacity fronthaul, which requires the precoding matrix to be quantized. We propose a new precoding design that is aware of the fronthaul quantization and minimizes the mean-squared error at the receiver side. We compute the precoding matrix using a sphere decoding (SD) approach. We also propose a heuristic low-complexity approach to quantized precoding. This heuristic is computationally efficient enough for massive MIMO systems. The numerical results show that our proposed precoding significantly outperforms quantization-unaware precoding and other previous approaches in terms of the sum rate. The performance loss for our heuristic method compared to quantization-aware precoding is insignificant considering the complexity reduction, which makes the heuristic method feasible for real-time applications. We consider both perfect and imperfect channel state information (CSI).

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
Precoding, Symbols, Quantization (signal), Downlink, Antennas, Complexity theory, Uplink, Quantization-aware precoding, advanced antenna system (AAS), limited fronthaul capacity, reduced complexity, MU-MIMO
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-343053 (URN)10.1109/TWC.2023.3247802 (DOI)001130158900004 ()2-s2.0-85149458917 (Scopus ID)
Note

QC 20240206

Available from: 2024-02-06 Created: 2024-02-06 Last updated: 2024-02-18Bibliographically approved
2. Fronthaul Quantization-Aware MU-MIMO Precoding for Sum Rate Maximization
Open this publication in new window or tab >>Fronthaul Quantization-Aware MU-MIMO Precoding for Sum Rate Maximization
2023 (English)In: ICC 2023 - IEEE International Conference on Communications: Sustainable Communications for Renaissance, Institute of Electrical and Electronics Engineers (IEEE) , 2023, p. 1332-1337Conference paper, Published paper (Refereed)
Abstract [en]

This paper considers a multi-user multiple-input multiple-output (MU-MIMO) system where the precoding matrix is selected in a baseband unit (BBU) and then sent over a digital fronthaul to the transmitting antenna array. The fronthaul has a limited bit resolution with a known quantization behavior. We formulate a new sum rate maximization problem where the precoding matrix elements must comply with the quantizer. We solve this non-convex mixed-integer problem to local optimality by a novel iterative algorithm inspired by the classical weighted minimum mean square error (WMMSE) approach. The precoding optimization subproblem becomes an integer least-squares problem, which we solve with a new algorithm using a sphere decoding (SD) approach. We show numerically that the proposed precoding technique vastly outperforms the baseline of optimizing an infinite-resolution precoder and then quantizing it. We also develop a heuristic quantization-aware precoding that outperforms the baseline while having comparable complexity.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
quantization-aware precoding, Sum rate maximization, weighted minimum mean square error
National Category
Signal Processing Telecommunications Communication Systems
Identifiers
urn:nbn:se:kth:diva-341463 (URN)10.1109/ICC45041.2023.10279822 (DOI)2-s2.0-85178302343 (Scopus ID)
Conference
2023 IEEE International Conference on Communications, ICC 2023, Rome, Italy, May 28 2023 - Jun 1 2023
Note

QC 20240110

Part of ISBN 9781538674628

Available from: 2024-01-10 Created: 2024-01-10 Last updated: 2024-03-18Bibliographically approved
3. Beam Coherence Time Analysis for Mobile Wideband mmWave Point-to-Point MIMO Channels
Open this publication in new window or tab >>Beam Coherence Time Analysis for Mobile Wideband mmWave Point-to-Point MIMO Channels
(English)Manuscript (preprint) (Other academic) [Artistic work]
Abstract [en]

Multi-Gbps data rates are achievable in millimeter-wave (mmWave) bands, but a prominent issue is the tiny wavelength that results in rapid fading variations and significant pilot signaling for channel estimation. In this letter, we recognize that the angles of scattering clusters seen from the user equipment (UE) vary slowly compared to the small-scale fading. We characterize the \emph{beam coherence time}, which quantifies how frequently the UE must update its downlink receive combining matrix. The exact beam coherence time is derived in the single-cluster case, and an achievable lower bound is proposed for the multi-cluster case. These values are determined so that at least half of the received signal gain is maintained in between the combining updates. We demonstrate how the beam coherence time can be hundreds of times larger than the channel coherence time of the small-scale fading.

National Category
Signal Processing
Identifiers
urn:nbn:se:kth:diva-343544 (URN)
Note

QC 20240219

Available from: 2024-02-16 Created: 2024-02-16 Last updated: 2024-02-19Bibliographically approved

Open Access in DiVA

fulltext(1424 kB)348 downloads
File information
File name FULLTEXT01.pdfFile size 1424 kBChecksum SHA-512
714014ed0c2635363f5a3d5955952893619050aef65c4c48647bf63acefcd488d2c9adf797807220e46a77d5393de5d7a24b54deea3370290d3832dfbb60795d
Type fulltextMimetype application/pdf

Authority records

Khorsandmanesh, Yasaman

Search in DiVA

By author/editor
Khorsandmanesh, Yasaman
By organisation
Communication Systems, CoS
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 348 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1219 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf