Open this publication in new window or tab >>2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Increasing concerns regarding the depletion of fossil-based resources and theaccumulation of plastic waste in the environment have resulted in extensiveresearch aimed at finding more sustainable alternatives to today’s plastics.In this work, bio-based and biodegradable polymers have been synthesizedusing free-radical polymerization in homogeneous and heterogeneoussystems. The polymers have been characterized with respect to chemicalstructure, thermal properties and degradation. This is a step towards thedevelopment of materials that are bio-based and biodegradable, ultimately toreduce the negative impact of plastic materials on the environment.It was found that bio-based α-methylene-γ-butyrolactone and α-methylene-γ-valerolactone (MeMBL) which exhibit similar chemical structures to fossilbasedmeth(acrylate) monomers, are capable of yielding polymers withsimilar or even superior properties compared to their fossil-basedcommodity counterparts. The differences in monomer reactivity affect thestructure of the copolymer which, in turn, influences the polymer properties,for instance, thermal behaviour (glass transition temperature). Theseproperties were later evaluated after the incorporation of MeMBL in thepolymeric shell of thermally expandable microspheres by free-radicalsuspension polymerization. Replacing fossil-based methyl methacrylate(MMA) with bio-based MeMBL resulted in partially bio-based thermallyexpandable microspheres (TEMs) where it was seen that the expansionproperties were affected as the expansion temperatures increased. It waseven possible to synthesize TEMs with a fully bio-based polymer shell with amuch higher expansion temperature window than TEMs with a fully fossilbasedpolymer shell.Free-radical ring-opening polymerization (rROP) has been used to synthesizedegradable polymers using cyclic ketene acetals (CKAs) which weresynthesized using a new more efficient synthesis route. Unlike traditionalring-opening polymerization, which results in linear polyesters, rROP of CKAsresults in branched polyesters. The degree of branching and introducing aside-group to the polymer chain influenced the polymer degradability wherethe presence of side-groups slowed the degradation significantly.The possibility to use these monomers in heterogeneous systems has beenevaluated by introducing CKA in the free-radical suspension polymerizationof microcapsules with a polymer shell from acrylonitrile (AN) and vinylacetate. However, their incorporation into the polymer backbone could notbe verified. This as the use of CKA in heterogeneous systems is challengingdue to their sensitivity towards hydrolysis and their low reactivity duringcopolymerization, especially toward acrylonitrile.
Abstract [sv]
Förbrukning av ändliga fossilbaserade resurser och ackumulering avplastavfall i miljön har resulterat i en omfattande forskning som syftar till atthitta mer hållbara alternativ till dagens plaster.I detta arbete har biobaserade och biologiskt nedbrytbara polymerersyntetiserats med hjälp av fri-radikalpolymerisation i homogena ochheterogena system. Polymererna har karakteriserats med avseende påkemisk struktur, termiska egenskaper och nedbrytning. Detta är ett steg motutveckling av material som är biobaserade och biologiskt nedbrytbara ochsom i slutändan kan minska plastmaterialens negativa påverkan på miljön.De biobaserad monomererna α-metylen-γ-butyrolakton (MBL) och α-metylen-γ-valerolakton (MeMBL) som uppvisar liknande kemiska strukturersom fossilbaserade met(akrylat) monomerer, kan ge polymerer medliknande eller till och med överlägsna egenskaper jämfört med dessfossilbaserade råvarumotsvarigheter. Skillnaderna i monomerreaktivitetpåverkar strukturen hos sampolymeren, vilket i sin tur påverkarpolymeregenskaperna, till exempel termiskt beteende(mjukningstemperatur). Dessa egenskaper utvärderades senare efterinkorporering av MeMBL i polymerskalet av termiskt expanderbaramikrosfärer (TEMs) genom friradikal suspensionspolymerisation. Att ersättafossilbaserad metylmetakrylat med biobaserad MeMBL resulterade i delvisbiobaserade TEMs där man såg att expansionsegenskaperna påverkades närexpansionstemperaturerna ökade. Det var även möjligt att syntetisera TEMsmed ett helt biobaserat polymerskal med ett mycket högreexpansionstemperaturfönster än TEMs med ett helt fossilbaseratpolymerskal.Friradikal ringöppningspolymerisation (rROP) har använts för attsyntetisera nedbrytbara polymerer med cykliska ketenacetaler (CKA) somsyntetiserades med en ny mer effektiv syntesväg. Till skillnad fråntraditionell ringöppningspolymerisation, som resulterar i linjära polyestrar,resulterar rROP av CKA i grenade polyestrar. Graden av förgrening ochinförande av en sidogrupp till polymerkedjan påverkade polymerensnedbrytbarhet där närvaron av sidogrupper bromsade nedbrytningenavsevärt.Möjligheten att använda dessa monomerer i heterogena system harutvärderats genom att introducera CKA i fri-radikalsuspensionspolymerisation av mikrokapslar med ett polymerskal frånakrylnitril och vinylacetat. Inkorporering av CKA i polymerkedjan kundeemellertid inte verifieras. Detta eftersom användningen av CKA i heterogenasystem är utmanande på grund av deras känslighet för hydrolys och deraslåga reaktivitet under sampolymerisation, särskilt mot akrylnitril.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 62
Series
TRITA-CBH-FOU ; 2024:6
Keywords
Bio-based polymers, biodegradation, branched polyesters, thermally expandable microspheres, copolymerization
National Category
Polymer Technologies Polymer Chemistry
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-343578 (URN)978-91-8040-838-7 (ISBN)
Public defence
2024-03-15, F3, Lindstedtsvägen 26, https://kth-se.zoom.us/j/69943260516, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research
Note
QC 20240222
2024-02-222024-02-202024-02-27Bibliographically approved