kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Synthesis, Physicochemical Characterization, and Cytotoxicity Assessment of Rh Nanoparticles with Different Morphologies-as Potential XFCT Nanoprobes
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0001-6774-5320
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0002-6854-1423
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0002-7674-6437
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0003-1162-8285
Show others and affiliations
2020 (English)In: Nanomaterials, E-ISSN 2079-4991, Vol. 10, no 11, p. 2129-2129Article in journal (Refereed) Published
Abstract [en]

Morphologically controllable synthesis of Rh nanoparticles (NPs) was achieved by the use of additives during polyol synthesis. The effect of salts and surfactant additives including PVP, sodium acetate, sodiumcitrate, CTAB,CTAC,andpotassiumbromideonRhNPsmorphologywasinvestigated. When PVP was used as the only additive, trigonal NPs were obtained. Additives containing Br− ions (CTAB and KBr) resulted in NPs with a cubic morphology, while those with carboxyl groups (sodium citrate and acetate) formed spheroid NPs. The use of Cl− ions (CTAC) resulted in a mixture of polygon morphologies. Cytotoxicity of these NPs was evaluated on macrophages and ovarian cancer cell lines. Membrane integrity and cellular activity are both influenced to a similar extent, for both the cell lines, with respect to the morphology of Rh NPs. The cells exposed to trigonal Rh NPs showed the highest viability, among the NP series. Particles with a mixed polygon morphology had the highest cytotoxic impact, followed by cubic and spherical NPs. The Rh NPs were further demonstrated as contrast agents for X-ray fluorescence computed tomography (XFCT) in a small-animal imaging setting. This work provides a detailed route for the synthesis, morphology control, and characterization of Rh NPs as viable contrast agents for XFCT bio-imaging. 

Place, publisher, year, edition, pages
MDPI AG , 2020. Vol. 10, no 11, p. 2129-2129
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-343799DOI: 10.3390/nano10112129ISI: 000594400100001Scopus ID: 2-s2.0-85094894899OAI: oai:DiVA.org:kth-343799DiVA, id: diva2:1840193
Note

QC 20240223

Available from: 2024-02-22 Created: 2024-02-22 Last updated: 2024-03-27Bibliographically approved
In thesis
1. Preclinical X-Ray Fluorescence Imaging with Multifunctional Nanoparticles
Open this publication in new window or tab >>Preclinical X-Ray Fluorescence Imaging with Multifunctional Nanoparticles
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

X-ray fluorescence imaging (XFI) is an emerging technique for preclinical studies, characterized by high resolution, specificity, and sensitivity. It relies on nanoparticles (NPs) as contrast agents, which must be constituted of specific elements that match the X-ray source energy for detection. Laboratory liquid metal-jet X-ray sources enable compact in vivo XFI, thereby extending the accessibility of this imaging technique beyond synchrotron facilities.

When designing NPs as contrast agents, biocompatibility is essential for both preclinical and clinical imaging, often requiring a passivating biocompatible coating on the NP surface. The NP cores can provide contrast by their elemental composition, while coating, conjugation, and decoration strategies can add other functionalities and improve biocompatibility.

In this thesis, multifunctional NPs are designed to extend the functionality of XFI contrast agents by incorporating optically fluorescent or magnetically active components: conjugated carbon quantum dots, dye-doped silica shell, and decorated superparamagnetic iron oxide NPs. The designed multifunctional NPs allow correlative and multiscale imaging with complementary techniques such as confocal optical microscopy or magnetic resonance imaging (MRI). Furthermore, these NPs also facilitate more comprehensive studies on NP pharmacokinetics, paving the way for more robust investigations in the field of nanomedicine.

The benefits of multifunctional NPs are demonstrated with two approaches. First, in vivo correlative imaging with MRI and XFI is shown to reduce false positives caused by MRI artifacts in the lungs and abdomen. Second, XFI is employed to enable rapid NP bioengineering, by iteratively improving NP properties and administration strategies for passive tumor targeting. Optical and X-ray fluorescent multifunctional NPs enable the co-localization of NPs at both macroscopic and microscopic levels with XFI and confocal microscopy, correlating NP accumulation in organs with NP-cell interactions. These results highlight the role of XFI in the field of nanomedicine, with potential applications in pharmacokinetics, tumor targeting, treatment monitoring, and the development of medical devices.

Abstract [sv]

Röntgenfluorescensavbildning (RFA) är en växande teknik för prekliniska studier, och karakteriseras av hög upplösning, specificitet och känslighet. RFA använder nanopartiklar (NP:ar) som kontrastmedel, vilket måste innehålla specifika element som matchar röntgenkällans energi. Röntgenkällor med flytande metallstråleteknik möjliggör kompakt in vivo RFA i laboratorier, vilket gör denna avbildningsteknik tillgänglig även utanför synkrotronanläggningar.

Vid utformningen av NP:ar som kontrastmedel är biokompatibilitet avgörande betydelse både för preklinisk och klinisk avbildning, vilket ofta kräver ett passiverande biokompatibelt skikt på NP-ytan. NP-kärnorna kan ge kontrast genom sin grundämnessammansättning, medan beläggnings-, konjugerings- och dekorationsstrategier kan lägga till andra funktionaliteter och förbättra biokompatibiliteten.

I denna avhandling syntetiseras multifunktionella NP:ar för att utöka funktionaliteten hos RFA-kontrastmedel genom att inkorporera optiskt fluorescerande eller magnetiskt aktiva komponenter: konjugerade kolkvantprickar, färgämnesdopat  kiseldioxidskal och dekorerade superparamagnetiska järnoxid NP:ar. De utformade multifunktionella NP:arna möjliggör korrelativ avbildning med kompletterande tekniker som konfokal optisk mikroskopi eller magnetisk resonanstomografi (MR). Dessutom underlättar dessa NP:ar också mer omfattande studier av NP-farmakokinetik, vilket banar väg för bättre underbyggda undersökningar inom nanomedicin.

Fördelarna med multifunktionella NP:ar demonstreras med två tillvägagångssätt. För det första har in vivo korrelativ avbildning med MR och RFA visat sig minska antalet falska positiva resultat orsakade av MR-artefakter i lungorna och buken. För det andra används RFA för att möjliggöra snabb utveckling och design av NP:ar, genom att iterativt förbättra NP-egenskaper och administreringsstrategier för passiv ansamling i tumörer. Optiska och röntgenfluorescerande multifunktionella NP:ar möjliggör samlokalisering av NP:ar på både makroskopisk och mikroskopisk nivå med RFA och konfokal mikroskopi, vilket korrelerar NP-ackumuleringar i organ med NP-cellinteraktioner. Dessa resultat belyser RFA:s roll inom nanomedicinfältet, med dess potentiella tillämpningar inom farmakokinetik, tumörmålsökning, behandlingsövervakning och utveckling av medicinska instrument.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024
Series
TRITA-SCI-FOU ; 2024:07
National Category
Radiology, Nuclear Medicine and Medical Imaging
Research subject
Physics, Biological and Biomedical Physics
Identifiers
urn:nbn:se:kth:diva-343804 (URN)978-91-8040-841-7 (ISBN)
Public defence
2024-03-22, Kollegiesalen, Brinellvägen 8, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 240227

Available from: 2024-02-27 Created: 2024-02-22 Last updated: 2024-02-27Bibliographically approved
2. Synthesis and Characterization of Nanoprobes for X-Ray Fluorescence Computed Tomography (XFCT) Bio-imaging
Open this publication in new window or tab >>Synthesis and Characterization of Nanoprobes for X-Ray Fluorescence Computed Tomography (XFCT) Bio-imaging
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

X-ray fluorescence computed tomography (XFCT) is an emerging biomedical imaging technique. The KTH-XFCT laboratory system offers a characteristic 24 keV emission line, and high spatial resolution (200 𝜇m) images. XFCT as a newly emerging modality also requires the exploration and development of suitable contrast agents. Nanomaterials have been widely used as contrast agents in many popular imaging modalities like MRI, PET, and CT. They have several advantages including long blood circulation time, high ratio of surface area to volume, and enhanced image contrast. However, the use of nanomaterials as contrast agents is limited by their biocompatibility and toxicity, which are determined by the physicochemical properties including size, morphology, surface chemistry. Therefore, the study on the synthesis and characterization of nanomaterials is an indispensable step. In this thesis, a group of elements (Y, Zr, Nb, Ru, Rh) are selected based on the X-ray K𝛼-absorption energy, matching with the 24 keV emission line of KTH-XFCT source. Y, Zr, Nb, Ru and Rh based nanoparticles are synthesized by hydrothermal and polyol method, identified as the ceramic and metallic groups. XRF performance is demonstrated by the XFCT system. Metallic Ru and Rh nanoparticles are further selected to study the synthesis conditions and in vitro toxicity for their smaller TEM and hydrodynamic size. Surface properties are investigated to show the isoelectric point and polymer coating on the metallic nanoparticles. Morphological different Rh nanoparticles are obtained by introducing different additives during the synthesis, indicating the different cytotoxicity performance attributed to different morphologies. Silica coating is further performed on the surface of metallic and metallic nanoparticles to improve their biocompatibility. The in vitro toxicity assessment are performed on the murine macrophages and human ovarian cancer cell lines. X-ray fluorescence performance is evaluated for each nanoparticles by using soft-tissue equivalent holder and in situ small-animal imaging experiments. The results indicates the spatial resolution and detection sensitivity of the concentration of the metallic nanoparticles. In this work, we demonstrate the potential of a group selected nanomaterials as XFCT contrast agents for the first time, especially, investigate the synthesis, surface properties, in vitro toxicity as well as detection sensitivity of the metallic nanoparticles.

Abstract [sv]

Röntgenfluorescenstomografi (XFCT) är en ny och lovande teknik för biomedicinsk avbildning. Det kompakta KTH-XFCT systemet har en röntgenemission på 24 keV och möjliggör avbildning med hög spatial upplösning (200 𝜇m). Eftersom XFCT är en ny modalitet behövs forskning och utveckling av lämpliga kontrastmedel. Nanomaterial har använts brett som kontrastmedel inom många etablerade avbildningstekniker, så som magnetresonanstomografi (MR), positronemissionstomografi (PET) och datortomografi (CT). Nanomaterial har flera fördelar jämfört med traditionella kontrastmedel, exempelvis längre blodcirkulationstider, större yta per volym och överlag förbättrad kontrast. Däremot begränsas användningen av nanomaterial som kontrastmedel av egenskaper såsom biokompatibilitet och toxicitet vilket bestäms av fysikokemikaliska egenskaper såsom storlek, morfologi och ytkemi. Därför är studier av syntes samt karakterisering av nanomaterial viktigt för biomedicinska tillämpningar. I denna avhandling har en grupp grundämnen (Y, Zr, Nb, Ru, Rh) valts ut baserat på att deras K-absorptionskanter matchar röntgenemissionen på 24 keV hos KTH-XFCT systemet. Y, Zr, Nb, Ru och Rh nanopartiklar synteserades med hydrotermiska samt polyol-metoder och klassades som antingen keramiska eller metalliska nanopartiklar. Röntgenfluorescensen från nanopartiklarna påvisades med KTH-XFCT systemet. De metalliska nanopartiklarna med mindre storlek baserade på Ru och Rh valdes ut och studerades närmare i termer av syntesparametrar samt in vitro toxicitet i cellkulturer. Ytegenskaper hos dessa metalliska nanopartiklar undersöktes för att uppvisa deras isoelektriska punkter samt PVP-ytskikt. Morfologiskt kontrollerbara Rh nanopartiklar tillverkades genom att introducera olika tillsatser under syntesprocessen, vilket sedan användes för att påvisa att cytotoxiciteten är morfologi-beroende. Ytan hos de metalliska nanopartiklarna modifierades med ett skikt av kiseldioxid för att ytterligare förbättra biokompatibiliteten. Murina makrofager och mänskliga cellinjer för äggstockscancer användes för att evaluera toxiciteten in vitro. Röntgenfluorescensavbildning med nanopartiklarna demonstrerades både med hjälp av mjukvävnad-liknande fantomer samt med in situ experiment i avlivna möss. Resultaten indikerade både spatial upplösning och observerbar koncentration av ackumulerade nanopartiklar i KTH-XFCT systemet. I detta arbete demonstreras för första gången potentialen hos en grupp utvalda nanomaterial som kontrastmedel för XFCT. Detta arbete inkluderar studier av syntes, ytkemi, in vitro toxicitet samt detektionssensitiviteten hos de metalliska nanopartiklarna.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2020. p. 67
Series
TRITA-SCI-FOU ; 2020:36
National Category
Biomaterials Science Inorganic Chemistry Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-286262 (URN)978-91-7873-705-5 (ISBN)
Public defence
2020-12-18, Via Zoom https://kth-se.zoom.us/j/69899182230, Stockholm, 14:00 (English)
Opponent
Supervisors
Available from: 2020-11-25 Created: 2020-11-23 Last updated: 2024-03-27Bibliographically approved

Open Access in DiVA

fulltext(6570 kB)105 downloads
File information
File name FULLTEXT01.pdfFile size 6570 kBChecksum SHA-512
bb04c19243844c05fb2f787ac6c45bdcd6d630939be51169642efda70ddbd37f569d1cd49a845f310a55385608b8356dff9e3b9c63c1b7e2cee67cbc0b932461
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Li, YuyangSaladino, GiovanniShaker, KianSvenda, MartinVogt, CarmenBrodin, BerthaHertz, HansToprak, Muhammet

Search in DiVA

By author/editor
Li, YuyangSaladino, GiovanniShaker, KianSvenda, MartinVogt, CarmenBrodin, BerthaHertz, HansToprak, Muhammet
By organisation
Biomedical and X-ray Physics
In the same journal
Nanomaterials
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 105 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 342 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf