kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Maximizing Power Dispatch of Wind-Storage System with Dynamic Thermal Rating Considering Battery Degradation Costs
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0001-5591-7287
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0002-2964-7233
Wind Energy Campus Gotland, Uppsala University Visby, Sweden.
Hitachi Energy Research Västerås, Sweden.
2023 (English)In: Proceedings of 2023 IEEE PES Innovative Smart Grid Technologies Europe, ISGT EUROPE 2023, Institute of Electrical and Electronics Engineers (IEEE) , 2023Conference paper, Published paper (Refereed)
Abstract [en]

In the wind farm expansion stage, installing battery energy storage systems (BESSs) assists in mitigating the time of overloading the connected transmission systems by peak shaving. Applying dynamic thermal rating (DTR) improves the utilization of the transmission systems based on monitoring real-time environmental conditions. DTR and BESS are combined in this paper to maximize power dispatch of an expanded wind farm without expanding the transmission system. The novelty of this paper lies in considering DTR of transformer and degradation cost of the batteries in the proposed optimization framework. Results show that the utilization of DTR and BESS mitigates wind power curtailment and applying DTR reduces degradation costs of the batteries. The findings also indicate the importance of carefully planning the size and control strategy of BESSs in order to minimize operational costs, especially for expanded wind farms and the connected transmission systems applying DTR.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2023.
Keywords [en]
battery degradation, battery storage, dynamic thermal rating, transformer, wind farm expansion
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-344030DOI: 10.1109/ISGTEUROPE56780.2023.10407543Scopus ID: 2-s2.0-85185228534OAI: oai:DiVA.org:kth-344030DiVA, id: diva2:1841400
Conference
2023 IEEE PES Innovative Smart Grid Technologies Europe, ISGT EUROPE 2023, Grenoble, France, Oct 23 2023 - Oct 26 2023
Note

QC 20240229

Part of ISBN 979-8-3503-9678-2

Available from: 2024-02-28 Created: 2024-02-28 Last updated: 2024-02-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Li, ZhongtianHilber, Patrik

Search in DiVA

By author/editor
Li, ZhongtianHilber, Patrik
By organisation
Electromagnetic Engineering and Fusion Science
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf