kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Autoplant—Autonomous Site Preparation and Tree Planting for a Sustainable Bioeconomy
Skogforsk, The Forestry Research Institute of Sweden, Uppsala, 751 83, Sweden.
KTH, School of Industrial Engineering and Management (ITM), Engineering Design.ORCID iD: 0000-0002-6807-0553
Skogforsk, The Forestry Research Institute of Sweden, Uppsala, 751 83, Sweden.
Department of Engineering Science and Mathematics, Luleå University of Technology, Luleå, 971 87, Sweden.
Show others and affiliations
2024 (English)In: Forests, E-ISSN 1999-4907, Vol. 15, no 2, article id 263Article in journal (Refereed) Published
Abstract [en]

Sustainable forestry requires efficient regeneration methods to ensure that new forests are established quickly. In Sweden, 99% of the planting is manual, but finding labor for this arduous work is difficult. An autonomous scarifying and planting machine with high precision, low environmental impact, and a good work environment would meet the needs of the forest industry. For two years, a collaborative group of researchers, manufacturers, and users (forest companies) has worked together on developing and testing a new concept for autonomous forest regeneration (Autoplant). The concept comprises several subsystems, i.e., regeneration and route planning, autonomous driving (path planning), new technology for forest regeneration with minimal environmental impact, automatic plant management, crane motion planning, detection of planting spots, and follow-up. The subsystems were tested separately and integrated together during a field test at a clearcut. The concept shows great potential, especially from an environmental perspective, with significantly reduced soil disturbances, from approximately 50% (the area proportion of the area disturbed by disc trenching) to less than 3%. The Autoplant project highlights the challenges and opportunities related to future development, e.g., the relation between machine cost and operating speed, sensor robustness in response to vibrations and weather, and precision in detecting the size and type of obstacles during autonomous driving and planting.

Place, publisher, year, edition, pages
MDPI AG , 2024. Vol. 15, no 2, article id 263
Keywords [en]
automation, mechanical site preparation, motion planning, obstacle detection, planting, route planning, silviculture, system analysis
National Category
Forest Science
Identifiers
URN: urn:nbn:se:kth:diva-344178DOI: 10.3390/f15020263ISI: 001172164500001Scopus ID: 2-s2.0-85185838051OAI: oai:DiVA.org:kth-344178DiVA, id: diva2:1842898
Note

QC 20240307

Available from: 2024-03-06 Created: 2024-03-06 Last updated: 2025-04-29Bibliographically approved
In thesis
1. Topographic Estimation, Online Trajectory Rollout, and Experimental Platforms for Autonomous Forest Machines
Open this publication in new window or tab >>Topographic Estimation, Online Trajectory Rollout, and Experimental Platforms for Autonomous Forest Machines
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis presents a comprehensive framework for advancing autonomous operations in unstructured terrains, focusing on the forestry industry. The research addresses critical challenges in autonomous systems development by integrating cutting-edge navigation, perception, and control technologies. As automation demand in forestry grows, current systems struggle in unpredictable off-road terrains. Unlike structured road autonomy, forest machines must navigate rough, obstacle-filled landscapes without predefined paths, yet existing solutions lack the needed adaptability. Consequently, forestry remains reliant on manual labor, especially in planting and site preparation, where automation is limited. Tackling these challenges requires smarter autonomous navigation, enhanced machine-terrain interaction, and sustainable automation strategies that boost productivity while reducing environmental impact. Key contributions of this thesis include (1) a novel roll-out path planning algorithm leveraging terrain-vehicle interaction to optimize navigation in rough terrains, validated through simulations and real-world deployments, (2) a sensor fusion method combining LIDAR and stereo camera data to enhance topographic estimation with a good balance between accuracy and coverage, (3) a modular, reconfigurable test platform offering a scalable and cost-effective solution for evaluating autonomous system components, bridging the gap between simulation and real-world testing, and (4) a demonstration prototype system for autonomous plant regeneration, demonstrating the feasibility of fully autonomous forestry operations, including site preparation and planting, reducing environmental impacts, and improving efficiency. By addressing sustainability challenges and introducing robust methodologies for autonomous systems, this work contributes to the broader application of intelligent machinery in forestry and beyond.

Abstract [sv]

Denna avhandling presenterar en omfattande ram för att främja autonoma operationer i ostrukturerade terränger, med fokus på skogsindustrin. Forskningen adresserar kritiska utmaningar inom utvecklingen av autonoma system genom att integrera avancerade teknologier för navigation, perception och styrning. I takt med att efterfrågan på automatisering inom skogsbruk ökar, kämpar nuvarande system med att fungera effektivt i oförutsägbara off-road-miljöer. Till skillnad från strukturerad autonomi på väg måste skogsmaskiner navigera i ojämn, hinderfylld terräng utan fördefinierade vägar. Befintliga navigationslösningar saknar den anpassningsförmåga som krävs för dessa förhållanden. Som ett resultat förblir skogsbruket starkt beroende av manuellt arbete, särskilt inom plantering och markberedning, där automation fortfarande är begränsad. För att hantera dessa utmaningar krävs innovativa tillvägagångssätt för autonom navigation, mer intelligenta interaktioner mellan maskin och terräng, samt hållbara automatiseringsstrategier som ökar produktiviteten samtidigt som den ekologiska påverkan minimeras. De viktigaste bidragen inkluderar (1) en ny metod för roll-out vägplanering som utnyttjar interaktionen mellan terräng och fordon för att optimera navigering i svår terräng, validerad genom simuleringar och fältstudier, (2) en metod för sensorfusion som kombinerar LIDAR- och stereo-kameradata för att förbättra topografisk uppskattning med en god balans mellan noggrannhet och täckning, (3) utvecklingen av en modulär och omkonfigurerbar testplattform som erbjuder en skalbar och kostnadseffektiv lösning för att utvärdera komponenter i autonoma system, vilket överbryggar gapet mellan simulering och verkliga tester, och (4) forskningen kulminerar i projektet "Autoplant", som demonstrerar genomförbarheten av fullt autonoma skogsoperationer, inklusive markberedning och plantering, vilket minskar miljöpåverkan och ökar effektiviteten. Genom att adressera hållbarhetsutmaningar och introducera robusta metoder för autonoma system bidrar detta arbete till en bredare tillämpning av intelligenta maskiner inom skogsbruk och andra områden.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 77
Series
TRITA-ITM-AVL ; 2025:15
Keywords
Autonomous systems, forest machinery, path planning, sensor fusion, sustainable forestry, robotics, unstructured terrain
National Category
Robotics and automation Computer Vision and Learning Systems Other Mechanical Engineering Forest Science Embedded Systems
Research subject
Machine Design
Identifiers
urn:nbn:se:kth:diva-362879 (URN)978-91-8106-253-3 (ISBN)
Public defence
2025-05-20, Gladan, Brinellvägen 85, Stockholm, 09:00 (English)
Opponent
Supervisors
Projects
AUTO2AUTOPLANTAUTOPLANT2AUTOPLANT3
Funder
Vinnova
Available from: 2025-04-29 Created: 2025-04-29 Last updated: 2025-04-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Sten, GustavMöller, Björn

Search in DiVA

By author/editor
Sten, GustavMöller, Björn
By organisation
Engineering Design
In the same journal
Forests
Forest Science

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 62 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf