kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Minimal Cantor sets
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Minimala Cantor mängder (Swedish)
Abstract [en]

A Cantor set is a topological space which admits a hierarchy of clopen covers. A minimal Cantor set is a Cantor set together with a map such that every orbit is dense in the Cantor set. In this thesis we us inverse limits to study minimal Cantor sets and their properties. In particular, under certain hypothesis we find an upper bound for the number of ergodic measures for minimal Cantor set.

Abstract [sv]

En Cantor mängd är ett topologiskt rum med en hierarki av slöppna täcken. En minimal Cantor mängd är en Cantor mängd tillsammans med en avblidning så att varje omlppsbana är tät. I den här uppsatsen använder vi omvända gränser för att studera minimala Cantor mängder och deras egenskaper. Särskilt under vissa omständigheter hittar vi en övre begränsning på antalet ergodiska mått på minimala Cantor mängder.

Place, publisher, year, edition, pages
2023. , p. 71
Series
TRITA-SCI-GRU ; 2023:454
Keywords [en]
Cantor sets, Minimal Cantor sets, Inverse limits, Combinatorial Covers
Keywords [sv]
Cantor mängder, Minimala Cantor mängder, Inversa gränser, Kombinatoriska övertäckningar
National Category
Other Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-344223OAI: oai:DiVA.org:kth-344223DiVA, id: diva2:1843170
Subject / course
Mathematics
Educational program
Master of Science - Mathematics
Supervisors
Examiners
Available from: 2024-03-22 Created: 2024-03-08 Last updated: 2024-03-22Bibliographically approved

Open Access in DiVA

fulltext(555 kB)303 downloads
File information
File name FULLTEXT01.pdfFile size 555 kBChecksum SHA-512
f0938ace5ebd0fcbc6c9c7dbaca5223e67f52360c94dc452e5fe4267507c147fa2dbdc6f432a6a579807e7ad51ae67a4321fed26e2027e29779e8b2bdfdb9bca
Type fulltextMimetype application/pdf

By organisation
Mathematics (Div.)
Other Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 303 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 304 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf