kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The role of fluid friction in streamer formation and biofilm growth
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0001-7696-850X
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0003-0770-787X
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.ORCID iD: 0000-0002-1981-3736
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Bacillus subtilis biofilms were grown in laminar channel flow at wall shear stress spanning one order of magnitude (tau_w = 0.068 Pa to tau_w = 0.67 Pa). We monitor, non-invasively, the evolution of the three-dimensional distribution of biofilm over seven days using optical coherence tomography (OCT). The obtained biofilms consist of many microcolonies where the characteristic colony has a base structure in the form of a leaning pillar and a streamer in the form of a thin filament that originates near the tip of the pillar. While the shape, size and distribution of these microcolonies depend on the imposed shear stress, the same structural features appear consistently for all shear stress values. The formation of streamers seems to occur after the development of a base structure, suggesting that the latter induces a curved secondary flow that triggers the formation of the streamers. Moreover, we observe that the biofilm volume grows approximately linearly over seven days for all the shear stress values, with a growth rate that is inversely proportional to the wall shear stress. We develop a simple model of friction-limited growth, which agrees with the experimental observations. The model provides physical insight into growth mechanisms and can be used to develop accurate continuum models of bacterial biofilm growth.

Keywords [en]
biofilm, streamers, wall shear stress, OCT
National Category
Fluid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-344239OAI: oai:DiVA.org:kth-344239DiVA, id: diva2:1844151
Funder
Swedish Research Council, 2020-04714
Note

QC 20240313

Available from: 2024-03-13 Created: 2024-03-13 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Experiments on biofilm formation and growth in laminar flows
Open this publication in new window or tab >>Experiments on biofilm formation and growth in laminar flows
2024 (English)Licentiate thesis, comprehensive summary (Other academic)
Alternative title[sv]
Experiment av biofilmer i laminära flöden
Abstract [en]

The interaction between fluid dynamics and biofilm growth plays a key role in both medical and industrial applications. Biofilms, or bacteria that are embedded in a protective matrix of extracellular polymeric substances, settle on interfaces such as on implanted devices or ship hulls. These biofilms canthen cause infectious diseases or significantly increase drag. In this thesis, we investigate the influence of flow, specifically shear stress, on the development of biofilm.

The first paper presents a new facility to investigate biofilm growth in laminar flow cells over extended periods of up to several weeks. Optical coherence tomography is used to obtain three-dimensional scans of the biofilm structure at regular intervals. From these time series, we derive a simple model that relates the growth of an individual microcolony to the growth of the full biofilm depending on the wall shear stress. Additionally, we show that biofilm streamers, thin, flexible filaments that extend into the bulk flow, can form on sharp biofilm structures in laminar flow, even if the substratum is a flat surface.

The second contribution is a report detailing preliminary studies on biofilm experiments. We investigate the formation of biofilm in the shear layer behinda backward-facing step. The results indicate a maximum shear stress, beyond which biofilm growth is inhibited. We also provide guidelines for the design of experimental setups for the investigation of the influence of fluid dynamics on biofilm and vice-versa.

Abstract [sv]

Samspelet mellan fluiddynamik och biofilmtillväxt spelar en nyckelroll i både medicinska och industriella tillämpningar. Biofilmer, eller bakterier som är inbäddade i en skyddande matris av extracellulära polymera substanser, sätter sig på ytor som på implanterade enheter eller fartygsskrov. Dessa biofilmer kan sedan orsaka infektionssjukdomar eller avsevärt öka vattenmotståndet. I den här avhandlingen undersöker vi hur flöde, speciellt skjuvspänning, påverkar utvecklingen av biofilm.

I den första artikeln presenteras en ny uppställning för att undersöka biofilmstillväxt i flödesceller med laminärt flöde under längre perioder på upp till flera veckor. Optisk koherenstomografi används för att få tredimensionella skanningar av biofilmstrukturen vid regelbundna intervall. Från dessa tidsserier härleder vi en enkel modell som relaterar tillväxten av en enskild mikrokoloni till tillväxten av hela biofilmen beroende på väggskjuvspänning. Dessutom visar vi att biofilm filament som sträcker sig in i bulkflödet, kan bildas på skarpa biofilmstrukturer i laminärt flöde, även om substratum är en plan yta. 

Det andra bidraget är en rapport som beskriver preliminära studier av biofilmsexperiment. Vi undersöker bildandet av biofilm i skjuvskiktet bakom ett bakåtvänt steg. Resultaten indikerar en maximal skjuvspänning, bortom vilken biofilmstillväxt hämmas. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024
Series
TRITA-SCI-FOU ; 2024:14
Keywords
biofilm, streamers, wall shear stress, OCT
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-344313 (URN)978-91-8040-869-1 (ISBN)
Presentation
2024-04-08, 4383 - Seminarierum Hållfasthetslära, Teknikringen 8D, Stockholm, 10:15 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2020-04714
Note

QC 240314

Available from: 2024-03-14 Created: 2024-03-13 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Wittig, CorneliusVallon, RomainCrouzier, Thomasvan der Wijngaart, WouterBagheri, Shervin

Search in DiVA

By author/editor
Wittig, CorneliusVallon, RomainCrouzier, Thomasvan der Wijngaart, WouterBagheri, Shervin
By organisation
Fluid Mechanics and Engineering AcousticsGlycoscienceMicro and Nanosystems
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 134 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf