kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Assessment of HVDC Frequency Control Methods in the Nordic Test System
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.ORCID iD: 0000-0001-6541-7892
Technical University of Denmark (DTU).
Technical University of Denmark (DTU).
University of Liège.
Show others and affiliations
2020 (English)In: Proc. CIGRE conference, CIGRE , 2020Conference paper, Published paper (Refereed)
Abstract [en]

The Frequency Containment Reserve (FCR) is one of the balancing actions to keep the frequency within acceptable limits. The objective of the FCR (also known as primary frequency control) is to stabilize the system frequency within a short time interval after a disturbance. Related to that, maximum steady-state frequency deviation and maximum Instantaneous Frequency Deviation (IFD) are defined. With higher integration of renewable energy sources, power systems will reduce its impact on pollution, but face much more often with low inertia scenarios. With low inertia values, the system decreases its inherent property to react to large power disturbances. In these cases, IFD is profoundly affected, and there is a need for fast and cost-effective solutions.  

High-Voltage Direct-Current (HVDC) links, with appropriate control strategies, could offer a solution to this problem. According to current system requirements, HVDC links must be capable of providing frequency support. Several studies have focused on control methods that adjust the power output of HVDC converters in response to frequency deviations; however, which method performs best in terms of reliability, robustness, and cost-effectiveness has still not been proved. 

The aim of this work is to apply and compare two control methods for HVDC frequency support in a test system representing the Nordic Power System (NPS), where this control mode is referred to as Emergency Power Control (EPC). The first method, the current paradigm in the NPS, is based on ramp power injections and frequency triggering activations. The second method, here proposed as the method for future EPC operation in the NPS, is a droop frequency-based EPC. The performance of these two methods is tested for two different disturbances, with the same EPC  power capacities. The main objective of the EPC is to meet the frequency requirements and avoid any negative interactions. The results show how the new proposed method outperforms compared to the current one, highlighting the benefits of a change of paradigm. The Nordic test system has been designed by authors to capture the frequency response of the NPS. Additionally, a single machine model is used to study the performance of the proposed EPC for the low inertia scenarios.

Place, publisher, year, edition, pages
CIGRE , 2020.
Keywords [en]
Droop Frequency Control, Emergency Power Control, Frequency Containment Reserves, HVDC Frequency Support, Low Inertia System, Nordic Power System.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-344523OAI: oai:DiVA.org:kth-344523DiVA, id: diva2:1845317
Conference
CIGRE 2020 Session, Paris, France, 24 Aug - 03 Sep 2020
Note

The paper is presented in both CIGRE 2020 Symposium and CIGRE 2021 Symposium.

QC 20240320

Available from: 2024-03-18 Created: 2024-03-18 Last updated: 2024-03-20Bibliographically approved
In thesis
1. Coordinated Frequency Control Using DC Interconnections Between AC Systems: Utilizing Fast Frequency Support through HVDC Links and Evaluating the Newly Uncovered Dynamics in Low-Inertia Power Systems
Open this publication in new window or tab >>Coordinated Frequency Control Using DC Interconnections Between AC Systems: Utilizing Fast Frequency Support through HVDC Links and Evaluating the Newly Uncovered Dynamics in Low-Inertia Power Systems
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Transmission system operators are increasingly adopting renewable energy sources in response to the escalating need to reduce environmental pollution. However, renewable energy sources, like wind and solar power, connect to the grid through power electronics, offering no inherent inertia. This reduction in inertia substantially deteriorates the frequency responses during large power disturbances. Frequency Containment Reserves (FCR) are designed to counteract these disturbances and stabilize frequency within a few seconds after an imbalance has occurred. However, in scenarios with low inertia and large power disturbances, relying solely on FCR may prove insufficient to maintain frequency within acceptable limits, risking power system blackouts and severe disruptions. This thesis, therefore, conducts a comprehensive evaluation of fast frequency support in the form of Emergency Power Control (EPC) from High Voltage Direct Current (HVDC) links as a complement to FCR.

Unlike prior research, which overlooked the consideration of technical requirements of FCR responses and their significance for EPC evaluation, this thesis fills these gaps. Additionally, previous literature examining EPC has not confirmed a reliable solution for a system of various HVDC links.

Various EPC designs are evaluated to reduce frequency deviations and avoid negative interactions. This thesis employs dynamic simulations and, where appropriate, various linear control theories. A spectrum of system models is used, from simplified single-machine equivalents to detailed multi-machine models, aiming to highlight common findings, explain disparities, and capture relevant stability interactions. Particular attention is given to voltage-dependent dynamics, which are often overlooked in frequency control assessments. Moreover, considering EPC's ability to apply large gains, the thesis explores its impact on small-signal stability.

The droop frequency-based EPC using local inputs emerges as a key and safe solution for controlling the frequency in the Nordic power system for present and future operations. It is shown that the proposed EPC reduces the frequency deviations when appropriate droop values are chosen. Even more, the research demonstrates stability and cost benefits when efficiently distributing EPC among different HVDC links and coordinating it with the FCR. The simple EPC design allowed for analyzing various dynamic interactions and derivations of strategies for avoiding the ones of a negative nature. Finally, the thesis confirms the overall positive and sustainable role of the proposed EPC.

Abstract [sv]

Systemoperatörer av överföringssystem hanterar en allt större andel förnybara energikällor som ett resultat av pågående energiomställning. Förnybara energikällor, så som vind- och solkraft, ansluts till elsystemet genom kraftelektronik vilket innebär att de inte bidrar med tröghet till elsystemet. Minskning av tröghet i elsystemet försämrar frekvenshållningen, speciellt då stora obalanser inträffar. Frekvenshållningsreserverna (FCRs – frequency containment reserves) är utformade för att stabilisera frekvensen inom några sekunder efter att en obalans inträffat. I scenarier med låg tröghet i elsystemet och då en stor obalans inträffar kan frekvenshållningsreserverna vara otillräckliga för att stabilisera och hålla frekvensen inom acceptabla gränser. Detta innebär en risk för ofrivillig automatisk förbrukningsbortkoppling samt risk för nätsammanbrott och därmed allvarliga störningar i elförsörjningen. Syftet med denna avhandling är att undersöka snabb frekvensreserv i form av nödeffekt (EPC) från högspänd likströmsförbindelser (HVDC – high voltage direct current) som ett komplement till frekvenshållningsreserverna.

Tidigare forskning har inte tagit hänsyn till tekniska krav på frekvenshållningsreserverna och deras betydelse för utvärderingen av nödeffekt vilket denna avhandling avser att behandla. Dessutom har tidigare litteratur som undersöker nödeffekt inte utvecklat en effektiv och tillförlitlig lösning för ett elsystem där olika HVDC-länkar ingår.

I denna avhandling utvärderas olika designer av nödeffekt med syftet att minska frekvensavvikelsen efter att en stor obalans har inträffat samt syftet att undvika negativa stabilitetsinteraktioner. Dynamiska simuleringar genomförs och olika linjära reglertekniska metoder/teorier används i analyserna. Ett flertal olika elsystemmodeller används, från en enkel en-maskinekvivalenten till mer detaljerade fler-maskinmodeller. Syftet med att använda olika modeller är att kunna förklara och verifiera resultat från teoretiska beräkningar samt att fånga relevanta stabilitetsinteraktioner. Särskilt fokus är på spänningsberoende dynamik vilken ofta bortses vid utvärdering av frekvensresponsen. Avhandlingen undersöker även inverkan på småsignalstabilitet vid hög förstärkning i nödeffektregleringen. 

Nödeffekt som regleras proportionellt mot frekvensavvikelsen och som använder lokala mätningar utgör en säker och robust lösning för att förbättra frekvensresponsen i det nordiska kraftsystemet, både i nu och framöver. Avhandlingen visar dessutom stabilitets- och kostnadsfördelar vid noga avvägd distribuering av nödeffekt mellan olika HVDC-förbindelser och samordning med frekvenshållningsreserverna. Den enkla och robusta nödeffektdesignen gör det möjligt att analysera olika dynamiska interaktioner och varierande strategier för att undvika negativa stabilitetsinteraktioner. Slutligen visar avhandlingen den övergripande positiva påverkan och framtida rollen av föreslagen nödeffektdesign.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. xviii, 129
Series
TRITA-EECS-AVL ; 2024:25
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-344534 (URN)978-91-8040-861-5 (ISBN)
Public defence
2024-04-18, F3, Lindstedtsvägen 26 & 28, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20240320

Available from: 2024-03-20 Created: 2024-03-18 Last updated: 2024-03-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Fulltext

Authority records

Obradović, DaniloEriksson, RobertGhandhari, Mehrdad

Search in DiVA

By author/editor
Obradović, DaniloEriksson, RobertGhandhari, Mehrdad
By organisation
Electric Power and Energy Systems
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 32 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf