kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enhancing Structural Battery Performance: Investigating the Role of Conductive Carbon Additives in LiFePO4-Impregnated Carbon Fiber Electrodes
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0009-0007-7850-585X
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This study centers on investigating the influence of conductive additives, carbon black (Super P) and graphene, within the context of LiFePO4 (LFP)-impregnated carbon fibers (CFs) produced using the powder impregnation method. The performance of these additives was subject to an electrochemical evaluation. The findings reveal that there are no substantial disparities between the two additives at lower cycling rates, highlighting their adaptability in conventional energy storage scenarios. However, as cycling rates increase, graphene emerges as the better performer. At a rate of 1.5C in a half-cell versus lithium, electrodes containing graphene exhibited a discharge capacity of 83 mAh g-1LFP ; those with Super P and without any additional conductive additive showed a capacity of 65 mAh g-1LFP  and 48 mAh g-1LFP , respectively. This distinction is attributed to the structural and conductivity advantages inherent to graphene, showing its potential to enhance the electrochemical performance of structural batteries. Furthermore, LFP-impregnated CFs were evaluated in full cells versus pristine CFs, yielding relatively similar results, though with a slightly improved outcome observed with the graphene additive. These results provide valuable insights into the role of conductive additives in structural batteries and their responsiveness to varying operational conditions, underlining the potential for versatile energy storage solutions. 

Keywords [en]
Carbon fiber, conductive additive, LiFePO4, Lithium-ion battery
National Category
Other Chemical Engineering
Research subject
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-344626OAI: oai:DiVA.org:kth-344626DiVA, id: diva2:1846382
Note

QCR 20240326

Available from: 2024-03-22 Created: 2024-03-22 Last updated: 2024-03-26Bibliographically approved
In thesis
1. LiFePO4-coated carbon fiber electrodes for structural batteries
Open this publication in new window or tab >>LiFePO4-coated carbon fiber electrodes for structural batteries
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Lithium-ion batteries (LIBs) have a central role in products, from portable devices to large-scale energy storage for the electric grid and continue to undergo rapid development. The surge in electric vehicles has intensified the focus on technological advancements and new-generation technologies. Structural batteries have received considerable attention for their multifunctionality and lightweight properties. These batteries utilize carbon fibers to combine their mechanical strength with battery functionalities in a single structure, consequently reducing overall weight and increasing energy density. Similar to traditional LIBs, structural batteries comprise negative and positive electrodes, reinforced within a structural battery electrolyte (SBE). While extensive research has been conducted on carbon fibers as negative electrodes, there has been a relative scarcity in the development of positive electrodes that align with the structural battery concept.

            This thesis explores coating methodologies on polyacrylonitrile (PAN)-based carbon fibers (CF) with positive electrode active material, specifically focusing on the utilization of lithium iron phosphate (LFP). Electron microscopy and electrochemical tests were conducted to evaluate the relation between structure with long-term and rate performances of these electrodes in half-cells. 

            Spray coating and siphon impregnation (later referred to as ‘powder impregnation’ in this thesis) techniques were employed to coat the carbon fibers, which serve as current collectors instead of conventional aluminum foil. The spray coating method utilized a standard electrode slurry based on an organic solvent, with efforts made to optimize parameters such as the height of the spray gun and plate temperature. The sprayed coating was quite thin, resulting in excellent rate capability. In the powder impregnation method, a water-based slurry was utilized with polyethylene glycol (PEG) as a binder. Efforts were made to obtain good fiber distribution within a homogeneous matrix of coating in the electrode. The parameters, including slurry viscosity, binder effect, electrode design, cell design, electrode preparation, and drying temperatures, were regulated for the best electrochemical performance and cell life. It was found that a binder is necessary for ensuring robust electrodes. Elevated drying temperatures are essential to eliminate moisture from the water-based process and components. Additionally, conductive carbon additives such as carbon black and graphene were incorporated, and their impact was assessed. A small amount of carbon additive (< 1 wt.%) improved performance at higher cycling rates. 

            The electrodes produced via powder impregnation were finally integrated into double-sided full cells versus uncoated PAN-derived CFs serving as negative electrodes in commercial liquid electrolyte or SBE, respectively. The LFP-coated CF electrodes exhibited good performance in full cells, indicating promising performance for the structural battery. The main limitation was observed in the power losses in the CF negative electrodes and in the ionic conductivity of the SBE. Overall, the thesis shows that the encapsulation of individual PAN-derived carbon fiber filaments using the applied coating methodologies was successful and that the use of carbon fibers as current collectors proved to be effective.

Abstract [sv]

Litiumjonbatterier (LIB) har en central roll i produkter, allt från bärbar elektronik till stora energilager för elnätet, och fortsätter att utvecklas snabbt. Utvecklingen av elfordon har inneburit ett intensifierat fokus på tekniska framsteg och nya generationer av teknologier. Strukturella batterier har fått stor uppmärksamhet för sin multifunktionalitet och sina lättviktegenskaper. Dessa batterier använder kolfibrer för att kombinera mekanisk styvhet och styrka med en batterifunktion i ett enda material, vilket minskar den totala vikten och ökar energitätheten. I likhet med traditionella LIB består strukturella batterier av negativa och positiva kolfiberelektroder i en strukturell batterielektrolyt (SBE). Även om omfattande forskning har bedrivits på kolfibrer som negativa elektroder, har det saknats lämpliga metoder för att utveckla positiva elektroder som är kompatibla med konceptet för strukturella batterier.

            Den här avhandlingen utforskas beläggningsmetoder på polyakrylnitril (PAN)-baserade kolfibrer (CF) med positivt elektrodaktivt material, i detta fall litiumjärnfosfat (LFP). Spraybeläggning och sifonimpregnering (senare kallad "pulverimpregnering" i denna avhandling) utvecklades för att belägga kolfibrerna, som fungerar som lastbärare och strömtilledare i stället för en konventionell aluminiumfolie. Elektronmikroskopi och elektrokemiska tester utfördes för att utvärdera strukturens påverkan på livslängd och prestanda för dessa elektroder i halvcell. 

            Spraybeläggningsmetoden utgick från en typisk elektrodslura med ett organiskt lösningsmedel, där själva spraymetoden justerades så som höjden på sprutpistolen och plattans temperatur. Beläggningen med spraymetoden blev relativt tunn vilket resulterade i mycket små förluster vid högre cyklingsströmmar. I pulverimpregneringsmetoden användes en vattenbaserad slura med polyetylenglykol (PEG) som bindemedel. Metoden förbättrades för god fördelning av fibrerna i en homogen matris som beläggningen utgjorde i elektroden. Parametrarna, inklusive slurans viskositet, bindemedelseffekt, elektroddesign, celldesign, elektrodberedning och torkningstemperaturer, justerades för bästa prestanda och livslängd. Det visade sig att bindemedel är nödvändigt för att säkerställa robusta elektroder. Förhöjda torkningstemperaturer är avgörande för att eliminera fukt från den vattenbaserade processen och komponenterna. Dessutom undersöktes inverkan av tillsatser av ledande kol som kimrök och grafen i elektroden. En liten mängd av koltillsats (< 1 wt.%) förbättrade prestandan vid högre cyklingshastigheter. 

            Elektroderna som producerades via pulverimpregnering integrerades slutligen i dubbelsidiga helceller både i kommersiell flytande elektrolyt och med polymerelektrolyt SBE, med obelagda PAN-baserade kolfibrer som negativa elektroder. De LFP-belagda CF-elektroderna uppvisade god cyklingsbarhet i helcellerna, vilket tyder på lovande prestanda för strukturbatteriet. Begränsningarna låg huvudsakligen i effektförluster kopplade till den negativa elektroden och i ledningsförmågan i SBE:n. Sammantaget visar avhandlingen att inkapslingen av enskilda PAN-baserade kolfiberfilament med det två beläggningsmetoderna var framgångsrik och att användningen av kolfibrer som strömtilledare fungerade väl. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 79
Series
TRITA-CBH-FOU ; 2024:9
Keywords
Lithium-ion battery, structural batteries, positive electrodes, PAN-based carbon fibers, lithium iron phosphate, Litiumjonbatteri, strukturella batterier, positiva elektroder, PAN-baserade kolfibrer, litiumjärnfosfat
National Category
Other Chemical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-344628 (URN)978-91-8040-887-5 (ISBN)
Public defence
2024-04-18, E3, Osquars backe 2, floor 2. Via Zoom: https://kth-se.zoom.us/webinar/register/WN_tlfpCwy2So2--moYgvclVg, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20240325

Available from: 2024-03-25 Created: 2024-03-22 Last updated: 2024-04-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Yucel, Yasemin DuyguZenkert, DanWreland Lindström, RakelLindbergh, Göran

Search in DiVA

By author/editor
Yucel, Yasemin DuyguZenkert, DanWreland Lindström, RakelLindbergh, Göran
By organisation
Applied ElectrochemistryVehicle Engineering and Solid Mechanics
Other Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 86 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf