kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Turbulent heat transfer in open-channel flows with thermally conductive porous walls
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0001-6520-3261
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-9819-2906
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-8209-1449
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Results of direct numerical simulations (DNS) of open channel incompressible turbulent flows over porous lattices are reported in this work. Heat transfer is included as a passive temperature scalar field which is advected by the velocity field but does not affect it. The evolution of the temperature field in both fluid and solid phases is considered, thus solving for the conjugate problem of heat transfer. The fluid-solid combination considered here is that of air and aluminum, which is common to practical cooling applications. Similar to Rouhi et al. (2022), the thermal performance is assessed in terms of the Reynolds analogy breakdown, which is the disparity between the fractional increases in the Stanton number, St, and the fractional increases in the skin-friction coefficient, Cf, relative to a baseline smooth-wall case. The breakdown is in general unfavorable over the porous substrates, similar to rough walls. Unlike rough walls however, a limit in heat transfer is not reached over the porous substrates for a similar amount of fractional increase in Cf. How much of a maximum gain in heat transfer can be achieved however remains to be determined. The unfavorable breakdown in Reynolds analogy is attributable to growing dissimilarities between momentum and heat transport in the vicinity of a substrate's surface as it becomes more permeable. Turbulent sweep and ejection type events contribute much more to the momentum transport across the permeable surface than they do to heat. Additionally, the change in heat transfer over the porous substrates is not monotonic. The total heat flux initially decreases when going from a conductive smooth wall to slightly porous walls. In this initial porous-wall regime, the near-wall flow is canonical in structure and the heat transfer is dominated by molecular diffusion. As such, a reduction of the more favorably conducting solid material diminishes the overall heat transfer performance. Beyond a certain level of permeability however, where the near-wall flow transitions to the K-H-like regime marked by the presence of cross-stream rollers, the heat flux undergoes an increasing trend and eventually surpasses that of the smooth-wall case. Therefore, depending upon the cooling configuration being considered, an assessment must first be made as to whether or not the heat transfer influence of the solid phase can be neglected. Otherwise, failing to take into account the thermal behavior of the solid material can result in overestimations of any gains in heat transfer.

National Category
Fluid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-344659OAI: oai:DiVA.org:kth-344659DiVA, id: diva2:1846823
Funder
Swedish Foundation for Strategic Research, SSF-FFL15-0001
Note

QC 20240326

Available from: 2024-03-25 Created: 2024-03-25 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Turbulent flows over permissive boundaries and porous walls
Open this publication in new window or tab >>Turbulent flows over permissive boundaries and porous walls
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Turbulenta flöden över porösa och ojämna ytor
Abstract [en]

This thesis investigates how in wall-bounded turbulent flows changes to the wall can induce changes in the flow. To this end, we investigate the use of wall boundary conditions meant to mimic the effect of textured surfaces. We also study the effect of porous walls on their overlying bulk turbulent flow and the consequences of these effects for heat transfer.

Textured surfaces can alter near-wall turbulence in subtle to dramatic ways. Vanishingly small surface textures of the order of the viscous sublayer thickness cause the displacement of the near-wall turbulence-generating flow structures by either restricting or permitting transpiration from taking place close to the surface. The former leads to drag reduction and the latter to its increase. As the textures increase in size and become comparable to the turbulence scales, they alter the near-wall dynamics and cause structural changes to occur in the flow. These effects are emulated using slip and transpiration boundary conditions called the Transpiration-Resistance model (TRM). Its utility in acting as an effective model for wall roughness is assessed. It captures the effect of vanishingly small roughness well, and to a limited extent larger roughness which protrude into the buffer layer. The TRM also helps to shed light on which near-wall structures play an essential role in the near-wall cycle of turbulence.

Porous walls permit the exchange of mass, momentum and energy with the overlying turbulence. Their permeable structure quickly causes the turbulence to depart from its canonical smooth-wall-like structure, and induce a Kelvin-Helmholtz-like instability which leads to the emergence of spanwise rollers. These rollers efficiently redistribute momentum and turbulent kinetic energy into the porous wall. This pronounced interaction between the wall and bulk flow regions is detrimental for drag but beneficial for the transport of heat. The potential of porous walls for enhancing heat transfer exceeds that of other passive wall structures such as roughness.

As an elementary study of the type of fluid-fluid-solid interactions which can take place on the microscale within porous media, the stability of a cylinder-wrapping corner film is investigated. It is shown that linear stability analysis (LSA) can predict the number of primary droplets when the film breaks up. The film morphology, however, exhibits complexities which cannot be predicted using LSA. A disjoining-pressure model (DPM) demonstrates that smaller secondary droplets may emerge during the film breakup process. Additionally, Volume of Fluid (VoF) simulations show that two initially emerging primary droplets may eventually coalesce into one, highlighting the non-linear mechanisms involved in the film morphology evolution.

Abstract [sv]

I detta arbete, undersöker vi hur turbulenta flöden påverkas av ytmodifieringar. För detta ändamål undersöker vi randvilkor som är avsedda att efterlikna effekten av ojämna ytor. Vi studerar också hur porösa ytor påverkar den överliggande turbulenta flödet.

Ytstrukturer kan påverka turbulens på ett subtilt sätt. Mycket små ytojämnheter (i storleksordningen av det viskösa skiktets tjocklek) orsakar en förskjutning av de turbulensgenererande flödesstrukturerna nära väggen genom att antingen begränsa eller tillåta transpiration att äga rum nära ytan. Det förra leder till minskning av luft/vattenmotståndet och det senare till dess ökning. När ytojämnheterna ökar i storlek och blir mer synliga för turbulensen, förändrar de dynamiken nära väggen och orsakar strukturella förändringar i flödet. Dessa effekter modelleras med hjälp av glid- och transpirationsrandvilkor som kallas ”Transpiration-Resistance Model”. Användbarheten av dessa randvilkor för att fungera som en effektiv modell för ytråhet har analyserats. Det visar sig att randvilkoren är en bra modell av små ytojämnheter, och i begränsad utsträckning större ojämnheter (som penetrerar buffertskiktet). TRM ökar vår förståelse kring vilka strukturer som är viktiga i turbulenscykeln när ytor.

Porösa väggar tillåter utbyte av massa, rörelsemängd och energi med den överliggande turbulensen. Deras permeabla struktur gör att turbulensen utvecklar en Kelvin-Helmholtz-liknande instabilitet som orsakar stora virvlar. Dessa virvlar omfördelar rörelsemängden och den turbulenta kinetiska energin i den porösa väggen. Denna överföring av energi bort från bulkflödet ökar motståndet men är fördelaktigt för transporten av värme. Vi visar att potentialen hos porösa väggar för förbättring av värmeöverföring är större jämfört med andra passiva väggstrukturer.

Vi har även utfört en studie av ett flerflassystem vid ytor. Flerfasinteraktioner äger oftast rum på en mikroskala i porösa medier. Vi har undersökt stabiliteten av tunn vätskehinna runt en cylinder. Teoretiska analyser från linjär stabilitetsanalys (LSA) kan prediktera antalet primära droppar som filmen kan bryta upp i. Filmmorfologin uppvisar emellertid komplexiteter som LSA inte tar hänsyn till. En mer komplex icke-linjär modell  visar att mindre sekundära droppar kan uppstå under filmuppbrytningsprocessen. Numeriska simuleringar baserade på .”Volume-of-Fluid (VoF)” visar att två initialt primära droppar så småningom kan gå ihop till en, vilket framhäver de icke-linjära mekanismerna som är involverade i processen.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. p. xi, 80
Series
TRITA-SCI-FOU ; 2024:15
Keywords
Direct numerical simulations, wall-bounded turbulence, flow control, porous walls, heat transfer, Direkta numeriska simuleringar, väggbunden turbulens, flödeskontroll, porösa väggar, värmeöverföring
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-344753 (URN)978-91-8040-875-2 (ISBN)
Public defence
2024-04-12, F3, Lindstedtsvägen 26, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research
Note

QC 20240327

Available from: 2024-03-27 Created: 2024-03-26 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Habibi Khorasani, Seyed MortezaBrethouwer, GertBagheri, Shervin

Search in DiVA

By author/editor
Habibi Khorasani, Seyed MortezaBrethouwer, GertBagheri, Shervin
By organisation
Linné Flow Center, FLOWFluid Mechanics and Engineering Acoustics
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 155 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf