kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A reflection enhanced method of fundamental solutions for Laplace and Stokes boundary value problems in 2D
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.ORCID iD: 0000-0003-0613-1426
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.ORCID iD: 0000-0002-4290-1670
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Two elliptic PDEs with Dirichlet boundary conditions are considered in 2D for a collection of simple objects: the exterior Laplace and Stokes boundary value problems. We present a novel, cost-effective, accurate and singularity-free solution technique based on the method of fundamental solutions. For circular objects, controllable accuracy is obtained for close-to-touching neighbours, with sources on inner proxy-boundaries complemented as needed by a small set of extra singularities in near-contact regions. The locations of the extra sources are deduced from the fractal obtained by repeated inversion of circles in circles, sometimes referred to as Indra’s pearls. For Stokes, results for coarsely resolved closely interacting circular particles, undergoing rigid body motion, are compared to results from a well-resolved boundary integral equation equipped with a special quadrature method. A careful parameter study is made for the locations of the additional sources and their singularity types to reach a target accuracy of 10^{-6} for circles of unequal radii, down to particle separations of a thousandth of the particle radii. For well-separated objects, a one-body preconditioning strategy allows for acceleration with the fast multipole method. 

Keywords [en]
Method of fundamental solutions, method of images, elliptic PDE, Stokes flow, accuracy
National Category
Computational Mathematics Fluid Mechanics
Research subject
Applied and Computational Mathematics, Numerical Analysis
Identifiers
URN: urn:nbn:se:kth:diva-344757OAI: oai:DiVA.org:kth-344757DiVA, id: diva2:1847355
Funder
Swedish Research Council, 2019-05206Swedish Research Council, 2016-06119
Note

QC 20240508

Available from: 2024-03-27 Created: 2024-03-27 Last updated: 2025-02-05Bibliographically approved
In thesis
1. Accuracy, efficiency and robustness for rigid particle simulations in Stokes flow
Open this publication in new window or tab >>Accuracy, efficiency and robustness for rigid particle simulations in Stokes flow
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The thesis concerns simulation techniques for systems of nano- to micro-scaled rigid particles immersed in a viscous fluid, ubiquitous in nature and industry. With negligible fluid inertia, the set of PDEs known as the Stokes equations can be used to model the hydrodynamics. For a dynamic study, the PDEs have to be solved at any given instance of time, provided the particle configuration and any non-hydrodynamic interactions. The resulting particle velocities can then be used to update the particle coordinates, and the equations repeatedly solved anew. For any simulation result of a physical system to be reliable, it is crucial to control different error contributions, with two error types here particularly in focus: those related to solving the Stokes equations and those related to the update in time.

The PDEs can be recast as boundary integral equations (BIEs) that hold on the particle surfaces. Hydrodynamic interactions are challenging: they are simultaneously long-ranged and expensive to resolve both in time and space for closely interacting particles. The latter is caused by strong lubrication forces resulting from bodies in relative motion. We approach two alternative and related techniques to BIEs that allow for more cost-effective simulations, namely the rigid multiblob method and the method of fundamental solutions. The former is a regularisation technique that allows for generally shaped particles in large systems, both with and without thermal fluctuations. We make two improvements: the basic error level is tied to the discretisation and set by solving a small optimisation problem off-line for each given particle shape, and the accuracy for closely interacting particles is improved by pair-corrections. With the method of fundamental solutions, we present a technique with linear or close to linear scaling in the number of particles, depending on if a so-called resistance or mobility problem is solved. For circles and spheres, the accuracy can be controlled to a target level independently of the particle separations. This is done by the introduction of a small set of image points for every pair of particles close to contact that well manage to represent lubrication forces.        

In the model, particles can neither touch nor overlap, and our work on time-stepping is tied to the problem of contact avoiding. We develop a new strategy that guarantees contact free simulations in 3D, essential for studying the system of particles over long time spans.   

Controlled accuracy in solutions to the Stokes equations can together with robust timestepping allow for simulations that can complement physical experiments of particle systems for a better understanding of their behaviour, to drive the development in fields such as materials science, biomedical engineering and environmental engineering.

Abstract [sv]

Avhandlingen behandlar simuleringstekniker för system av stela partiklar på nano- till mikroskala i en viskös vätska. Sådana system har en stor spännvidd av tillämpningsområden både i naturen och i industrin. Då vätskans tröghet anses försumbar utgör uppsättningen av partiella differentialekvationer (PDEer) känd som Stokes ekvationer en modell för vätskans fysik. För att studera dynamiska förlopp behöver PDEerna lösas vid varje given tidpunkt, givet partikelkonfigurationen och eventuell extern påverkan mellan partiklarna. De resulterande hastigheterna på partiklarna används för att uppdatera dess positioner och ekvationerna kan sedan lösas på nytt. För att ett simuleringsresultat av ett fysiskt system ska vara tillförlitligt är det viktigt att kontrollera olika felkällor. Vi fokuserar specifikt på de numeriska fel som uppstår när Stokes ekvationer löses approximativt och felet från tidsstegningen, alltså uppdateringen av koordinater över tid.               

Interaktionerna i vätskan är utmanande att hantera: de avtar långsamt med ökande partikelavstånd och är dyra att lösa upp vid nära kontakt. Det sistnämnda är en konsekvens av de starka lubrikationskrafter som relativ rörelse mellan partiklar resulterar i på korta avstånd. PDEerna kan omformuleras som randintegralekvationer på partiklarnas ytor. Vi behandlar två alternativa men relaterade tekniker som möjliggör billigare simuleringar. Den stela multiblob-metoden bygger på regularisering och kan hantera stora system av partiklar med generell geometri. Två förbättringar utvecklas: den basala felnivån relaterar till diskretiseringen av partiklarna och sätts genom att förberäkna lösningen till ett litet optimeringsproblem för varje unik partikeltyp. Noggrannheten för nära interaktion förbättras sedan med hjälp av parkorrektioner. Genom en alternativ metod baserad på fundamentallösningar presenterar vi en ny snabb teknik som skalar linjärt med antalet partiklar. För cirklar och sfärer kan noggrannheten kontrolleras oberoende av partikelavstånd genom att introducera en uppsättning reflektionspunkter för varje par av partiklar nära varandra, som väl kan representera de lubrikationskrafter som uppstår.        

I ett Stokesflöde kan partiklar varken kollidera eller överlappa och vårt arbete relaterat till tidsstegning behandlar kontaktundvikande algoritmer. Vi utvecklar en ny optimeringsbaserad strategi som garanterar att partiklar förblir kontaktfria i 3D. En sådan teknik är nödvändig för att kunna studera partiklar över långa tidsintervall.                

Kontrollerad noggrannhet kan tillsammans med robust tidsstegning möjliggöra att simuleringar kan komplettera fysiska experiment så att en ökad förståelse av partikelsystemen kan leda till utveckling inom exempelvis materialvetenskap, biomedicin och miljövetenskap.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. p. 107
Series
TRITA-SCI-FOU ; 2024:17
Keywords
Stokes flow, rigid particles, accuracy, fundamental solutions, method of images, multiblob, contact avoiding, complementarity problem, barrier method, elliptic PDE, grid optimisation, pair-correction, boundary integral equations, Stokesflöde, noggrannhet, stela partiklar, fundamentallösningar, randintegralekvation, reflektionspunkter, multiblob, kontaktundvikande algoritmer, komplementaritetsproblem, barriärmetod, elliptisk PDE, gridoptimering, parkorrektion
National Category
Computational Mathematics
Research subject
Applied and Computational Mathematics, Numerical Analysis
Identifiers
urn:nbn:se:kth:diva-344768 (URN)978-91-8040-879-0 (ISBN)
Public defence
2024-04-26, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2019-05206Swedish Research Council, 2016-06119
Available from: 2024-03-28 Created: 2024-03-27 Last updated: 2025-03-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Broms, AnnaTornberg, Anna-Karin

Search in DiVA

By author/editor
Broms, AnnaTornberg, Anna-Karin
By organisation
Numerical Analysis, NA
Computational MathematicsFluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 298 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf