kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Neko: A modern, portable, and scalable framework for high-fidelity computational fluid dynamics
KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for High Performance Computing, PDC.ORCID iD: 0000-0002-5020-1631
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST).ORCID iD: 0000-0003-3374-8093
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Software and Computer systems, SCS.ORCID iD: 0000-0001-5452-6794
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST).ORCID iD: 0000-0003-0639-0639
Show others and affiliations
2024 (English)In: Computers & Fluids, ISSN 0045-7930, E-ISSN 1879-0747, Vol. 275, p. 106243-106243, article id 106243Article in journal (Refereed) Published
Abstract [en]

Computational fluid dynamics (CFD), in particular applied to turbulent flows, is a research area with great engineering and fundamental physical interest. However, already at moderately high Reynolds numbers the computational cost becomes prohibitive as the range of active spatial and temporal scales is quickly widening. Specifically scale-resolving simulations, including large-eddy simulation (LES) and direct numerical simulations (DNS), thus need to rely on modern efficient numerical methods and corresponding software implementations. Recent trends and advancements, including more diverse and heterogeneous hardware in High-Performance Computing (HPC), are challenging software developers in their pursuit for good performance and numerical stability. The well-known maxim “software outlives hardware” may no longer necessarily hold true, and developers are today forced to re-factor their codebases to leverage these powerful new systems. In this paper, we present Neko, a new portable framework for high-order spectral element discretization, targeting turbulent flows in moderately complex geometries. Neko is fully available as open software. Unlike prior works, Neko adopts a modern object-oriented approach in Fortran 2008, allowing multi-tier abstractions of the solver stack and facilitating hardware backends ranging from general-purpose processors (CPUs) down to exotic vector processors and FPGAs. We show that Neko’s performance and accuracy are comparable to NekRS, and thus on-par with Nek5000’s successor on modern CPU machines. Furthermore, we develop a performance model, which we use to discuss challenges and opportunities for high-order solvers on emerging hardware

Place, publisher, year, edition, pages
Elsevier BV , 2024. Vol. 275, p. 106243-106243, article id 106243
National Category
Fluid Mechanics Computational Mathematics Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-344896DOI: 10.1016/j.compfluid.2024.106243Scopus ID: 2-s2.0-85189508362OAI: oai:DiVA.org:kth-344896DiVA, id: diva2:1848186
Funder
Swedish Research Council, 2019-04723EU, Horizon 2020, 823691EU, Horizon 2020, 801039
Note

QC 20240403

Available from: 2024-04-02 Created: 2024-04-02 Last updated: 2025-02-05Bibliographically approved
In thesis
1. Direct Numerical Simulation of Turbulence on Heterogenous Computer Systems: Architectures, Algorithms, and Applications
Open this publication in new window or tab >>Direct Numerical Simulation of Turbulence on Heterogenous Computer Systems: Architectures, Algorithms, and Applications
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Direct numerical simulations (DNS) of turbulence have a virtually unbounded need for computing power. To carry out these simulations, software, computer architectures, and algorithms must operate as efficiently as possible to amortize the large computational cost. However, in a computing landscape increasingly incorporating heterogeneous computer systems, changes are necessary. In this thesis, we consider how DNS can be carried out efficiently on upcoming heterogeneous computer systems. This work relates to developing algorithms for upcoming heterogeneous computer architectures, overcoming software challenges associated with large-scale DNS on these platforms, and applying these developments to new flow cases that were previously too costly to carry out. We consider in particular the spectral element method for DNS and evaluate how this method maps to field-programmable gate arrays, graphics processing units, as well as conventional processors. We also consider the issue of trading arithmetic operations for less communication, reducing the cost of solving the linear systems that arise in the spectral element method. Our developments are incorporated into the spectral element framework Neko, enabling Neko to strong-scale efficiently on the largest supercomputers in the world. Finally, we have carried out several DNS such as the simulation of a Flettner rotor in a turbulent boundary layer and simulating Rayleigh-Bénard convection at very high Rayleigh numbers. The developments in this thesis enable the high-fidelity simulation of turbulence on emerging computer systems with high parallel efficiency and performance.

Abstract [sv]

Direct numerisk simulering (DNS) av turbulens kräver enorma mängder datorkraft. För att utföra simuleringar som DNS krävs det att mjukvara, datorarkitekturer och algoritmer samverkar så effektivt som möjligt tillsammans. Idag förändras superdatorer snabbt och inkoporerar nya heterogena datorarkitekturer. Detta innebär att nya tillvägagångssätt är nödvändiga för att tillgodogöra sig all beräkningskraft. I den här avhandlingen fokuserar vi på DNS på heterogena, storskaliga, datorsystem för att möjligöra nya simuleringar av turbulenta flöden. För att nå detta mål undersöker vi nya datorarkitekturer, analyserar och förbättrar de numeriska metoderna och algoritmerna vi använder och applicerar slutligen våra utvecklingar på nya simuleringar av turbulens. Vi fokuserar speciellt på den spektrala element metoden (SEM) för DNS och undersöker hur den beter sig på eng. field-programmable gate arrays, grafikkort och konventionella processorer. Vi bidrar även med analys av hur vi löser det linjära systemet som utgör kärnan i SEM för att bättre utnyttja den tillgängliga datorkraften och minska mängden data som behöver överföras. Våra förbättringar inkorporeras i SEM lösaren Neko och möjligör att Neko kan skala effektivt på de största superdatorerna i världen. Vi använder sedan detta ramverk för att genomföra flera storskaliga simuleringar. Vi genomför den första simuleringen av en Flettner rotor och dess interaktion med turbulent skjuvströmning samt simulering av Rayleigh-Bénard konvektion i en cylindrisk domän vid mycket höga Rayleigh tal. Avhandlingen möjligör detaljerad numerisk simulering av turbulens med hög skalbarhet och prestanda i dagens föränderliga datorlandskap. 

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. p. 54
Series
TRITA-EECS-AVL ; 2024:36
Keywords
High Performance Computing, Turbulence, Computational Fluid Dynamics, Heterogenous Computer Architectures, Högprestandaberäkningar, Turbulens, Numerisk Strömingsmekanik, Heterogena Datorarkitekturer
National Category
Computer Sciences Fluid Mechanics
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-345851 (URN)978-91-8040-910-0 (ISBN)
Public defence
2024-05-24, https://kth-se.zoom.us/s/61541415709, Kollegiesalen, Brinellvägen 6, Stockholm, 09:15 (English)
Opponent
Supervisors
Funder
Swedish e‐Science Research Center, SESSI
Note

QC 20240423

Available from: 2024-04-23 Created: 2024-04-22 Last updated: 2025-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Jansson, NiclasKarp, MartinPodobas, ArturMarkidis, StefanoSchlatter, Philipp

Search in DiVA

By author/editor
Jansson, NiclasKarp, MartinPodobas, ArturMarkidis, StefanoSchlatter, Philipp
By organisation
Centre for High Performance Computing, PDCComputational Science and Technology (CST)Software and Computer systems, SCSTurbulent simulations laboratory
In the same journal
Computers & Fluids
Fluid MechanicsComputational MathematicsComputer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 910 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf