kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An image-based map of the mitochondrial proteome reveals widespread metabolic heterogeneity
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.ORCID iD: 0000-0001-6566-3559
KTH, Centres, Science for Life Laboratory, SciLifeLab.ORCID iD: 0000-0002-6368-6690
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Mitochondria are involved in a wide range of cellular functions beyond their role in energy metabolism. Defining the human mitochondrial proteome is crucial to understand the mitochondria’s diverse functions and role in disease. Here, we present an image-based map of the human mitochondrial proteome containing 1,121 proteins with subcellular resolution. Our analysis shows that 48.3% (n=542) of the proteins localize to additional cellular compartments, further contributing to the diverse cellular functions of mitochondria and connectivity to other organelles. Furthermore, the mitochondrial proteome reveals tissue specific clustering, suggesting tissue specific functions and physiology. Strikingly, the single cell resolution of our dataset revealed extensive heterogeneity for as much as 33.5% (n=376) of the mitochondrial proteome which could not be explained by cell cycle progression. By performing a high throughput immunofluorescence screen, we conclude that heterogeneity in mitochondria protein expression can establish metabolic states in cell populations. This map of the mitochondrial proteome, part of the Human Protein Atlas database (www.proteinatlas.org), provides a valuable knowledge resource for studies of mitochondria function, dysfunction and disease. 

National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:kth:diva-344914OAI: oai:DiVA.org:kth-344914DiVA, id: diva2:1848512
Note

QC 20240405

Available from: 2024-04-03 Created: 2024-04-03 Last updated: 2024-04-05Bibliographically approved
In thesis
1. Finding order in chaos: Dissecting single-cell heterogeneity in space and time
Open this publication in new window or tab >>Finding order in chaos: Dissecting single-cell heterogeneity in space and time
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The cell is the smallest unit of life and contains DNA, RNA, proteins and a variety of other macromolecules. In recent years, technological advances in the field of single cell biology have revealed a staggering amount of phenotypic heterogeneity between cells in a population, which were previously considered homogenous. Previous work has largely been focused on studies of RNA. As proteins however are the ultimate effectors of genetic information, this thesis aims to provide a protein-centered view on cellular heterogeneity, particularly focusing on cell cycle and cellular metabolism.

Most of my work has been performed within the framework of the Human Protein Atlas project. In the context of this project, we mapped the spatial distribution of more than 13.000 human proteins with subcellular resolution and found that around a quarter of all human proteins exhibit protein expression heterogeneity.

In Paper I, we hypothesized that a majority of the observed cellular heterogeneity can be explained by differences in cell cycle progression. Therefore, we generated a map of proteomic and transcriptomic heterogeneity at subcellular resolution, which we precisely aligned to the cell cycle position of individual cells. This approach allowed us to identify hundreds of previously unknown cell cycle-related proteins. With sustained proliferative signaling representing a hallmark of cancer, novel cell-cycle proteins could serve as potential new drug targets against cancer. We further show that a large part of cell cycle dependent proteome variability is not established by transcriptomic cycling. This suggests that post-translational modifications are a major contributor to the regulation of cell cycle dependent protein level changes. Therefore, in Paper II, we carried out a deep phosphoproteome mass spectrometry profiling of the same cellular model as in Paper I and identified almost 5,000 cell cycle dependent phosphosites on over 2,000 proteins. The unprecedented scale of our phosphoproteomic data allows us to link cell cycle dependent protein expression dynamics to phosphorylation events. Furthermore, we identify a large set of proteins with stable expression levels and fluctuating phosphorylation patterns along cell cycle progression that likely alters protein function.

Despite identifying hundreds of novel cell cycle dependent proteins in paper I, we observed that the majority of heterogeneously expressed proteins display variable expression independent of cell cycle progression, among them a large number of metabolic enzymes. Thus, we sought to describe the extent of subcellular metabolic complexity in human cells and tissues in Paper III. While we confirm metabolic compartmentalization in our dataset, we show that around 50% of metabolic enzymes localize to multiple cellular compartments. By integrating public protein-protein interaction data with our subcellular location information, we identify several enzymes with novel compartment-specific functions. Additionally, we observe a strongly elevated number of heterogeneously expressed enzymes compared to the background of the human proteome that is largely independent of cell cycle progression. We show that this heterogeneity can be manifested in the lineage of a single cell and is conserved in situ. To conclude, we suggest that the extensive metabolic heterogeneity can establish functional metabolic states in a population of human cells.

Finally, in Paper IV, we assessed the heterogeneity of the mitochondrial proteome as they are metabolic powerhouses containing an elevated number of cell cycle independent variably expressed proteins. In this study, we correlated the variable expression of over 400 mitochondrial proteins to the expression of rate limiting enzymes in important mitochondrial pathways; such as the TCA cycle and ROS metabolism. We show that enzymes in the same pathways often correlate in their expression, indicating that their expression variability may contribute to the establishment of metabolic states.

Altogether, the thesis illuminates the spatiotemporal complexity of the human proteome established by protein multilocalization and expression heterogeneity as fundamental non-genetic means of functional cell regulation.

Abstract [sv]

Cellen är den minsta enheten av liv, och varje cell innehåller en komplex uppsättning av DNA, RNA, proteiner och andra makromolekyler. Under de senaste åren har teknologiska framsteg inom cellbiologiska studier av enskilda celler avslöjat en överväldigande mängd fenotypisk heterogenitet mellan cellpopulationer som tidigare betraktades som homogena. Tidigare kartläggning av denna heterogenitet har främst fokuserat på studier av RNA. Denna avhandling syftar dock till att ge en proteincentrerad syn på cellulär variabilitet, med särskilt fokus på cellcykeln och cellulär metabolism.

Det mesta av mitt arbete innefattar data från Human Protein Atlas-projektet. I detta projekt har vi kartlagt den spatiala fördelningen av över 13 000 mänskliga proteiner med subcellulär upplösning. Vi finner att ungefär en fjärdedel av alla mänskliga proteiner uppvisar heterogenitet i proteinuttryck mellan enskilda celler.

I Artikel I undersökte vi hypotesen att majoriteten av den observerade cellulära heterogeniteten kan förklaras av skillnader i cellcykelprogression. Därför genererade vi en stor karta över proteomisk och transkriptomisk uttrycksdata i relation till den mänskliga cellcykeln i enskilda celler. Vi identifierade hundratals nya proteiner relaterade till cellcykeln, vilka kan komma att fungera som potentiella läkemedelsmål vid sjukdomar som cancer. Vi visar vidare att en stor del av den cellcykelberoende variabiliteten på proteinnivå inte etableras genom cykliska ändringar av transkriptomet. Detta antyder att posttranslationella modifieringar i betydande utsträckning bidrar till regleringen av dynamiska förändringar i proteinuttryck under cellcykeln.

Därför utförde vi i Artikel II en djup masspektrometriprofilering av fosfoproteomet längs samma cellulära modell som i Artikel I och identifierade över 2000 cellcykelberoende fosforyleringsplatser hos människans proteiner. Den oöverträffade omfattningen av denna fosfoproteomiska data gör att vi kan koppla cellcykelberoende dynamik i proteinuttryck till fosforyleringshändelser. Dessutom identifierar vi en stor uppsättning proteiner med stabila uttrycksnivåer och varierande fosforyleringsmönster längs cellcykelns progression, vilket sannolikt reglerar deras funktion.

I Artikel I observerade vi också att majoriteten av heterogent uttryckta proteiner visar variation som är oberoende av cellcykelprogression, och bland dessa proteiner finns ett stort antal metaboliska enzymer. Därför strävade vi efter att beskriva omfattningen av subcellulär metabolisk komplexitet hos mänskliga celler och vävnader i Artikel III. Samtidigt som vi bekräftar att det finns en spatiell uppdelning av cellulära metaboliska processer visar vi att ungefär 50% av de metaboliska enzymerna lokaliserar till flera subcellulära avdelningar. Genom att integrera offentliga protein-protein-interaktionsdata med vår information om subcellulär lokalisering identifierar vi flera enzymer som utför olika funktioner i olika cellulära avdelningar. Dessutom observerar vi en starkt ökad mängd heterogent uttryckta enzymer. Vi föreslår att denna omfattande metaboliska heterogenitet kan etablera olika funktionella metabola tillstånd i en population av mänskliga celler.

Slutligen utvärderade vi i Artikel IV heterogeniteten hos det mitokondriella proteomet eftersom de är metabola kraftverk som innehåller en stor andel proteiner vars uttryck varierar beroende av cellcykeln. I denna studie korrelerade vi det variabla uttrycket av över 400 mitokondriella proteiner med uttrycket av hastighetsbegränsande enzymer i viktiga mitokondriella processer, såsom citronsyracykeln och metabolism av reaktiva syreföreningar. Vi visar att enzymer i samma reaktionsvägar ofta korrelerar i sitt uttryck, vilket indikerar att deras uttrycksvariabilitet kan bidra till etableringen av metabola tillstånd.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. 49
Series
TRITA-CBH-FOU ; 2024:12
Keywords
non-genetic single-cell heterogeneity, cell cycle, metabolism, imaging-based subcellular proteomics, phosphoproteomics, icke-genetisk single-cell heterogenitet, cellcykel, metabolism, bildbaserad subcellulär proteomik, fosfoproteomik
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-344949 (URN)978-91-8040-892-9 (ISBN)
Public defence
2024-05-03, Air&Fire, Science for Life Laboratory, Tomtebodavägen 23, via Zoom: https://kth-se.zoom.us/j/64135640770, Solna, 10:00 (English)
Opponent
Supervisors
Note

QC 2024-04-08

Available from: 2024-04-08 Created: 2024-04-05 Last updated: 2024-04-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Gnann, ChristianWiking, MikaelaAxelsson, UlrikaUhlén, MathiasMahdessian, DianaKäller Lundberg, Emma

Search in DiVA

By author/editor
Gnann, ChristianWiking, MikaelaAxelsson, UlrikaUhlén, MathiasMahdessian, DianaKäller Lundberg, Emma
By organisation
Cellular and Clinical ProteomicsScience for Life Laboratory, SciLifeLabSystems Biology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 278 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf