kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Convex Optimisation Approach to Portfolio Allocation
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
En Konvex Optimerings-metod för Portföljallokering (Swedish)
Abstract [en]

The mean variance framework (MV) developed by Markowitz in his groundbreaking paper offers a quantitative and rational approach to portfolio selection. It is well known to market practitioners however that the MV optimal portfolios tend to perform subpar. One of the issues of the MV portfolios is that they require the inverse of a large covariance matrix, which is often ill-conditioned. In this thesis, we develop a new approach to circumvent these issues. We propose an optimisation approach akin to least squares linear regression and compare the performance with an establish method, covariance shrinkage. When tested on a set of 30 futures contracts, we find that the models yield promising results albeit somewhat lower than that of the benchmark.

Abstract [sv]

Mean variance ramverket (MV) framtaget av Markowitz i sin banbrytande artikel möjliggör en kvantitativ och rationell metod för portföljallokering. Det är däremot ett väletablerat faktum bland marknadsaktörer att Markowitz-optimala portföljer tenderar att prestera relativt dåligt. Ett av tillkortakommandena av ramverket är den ofta problemtyngda inverteringen av, den ofta stora, kovariansmatrisen som är illa konditionerad. I denna uppsats föreslår vi en ny metod för att kringgå detta problem. Vi föreslår en optimeringsmetodologi mycket lik minsta kvadratmetoden i linjär regression. Denna metod utvärderas sedan mot en vedertagen metod, kovarianskrympning. När vi utvärderar vår modell på 30 stycken terminskontrakt ser vi lovande resultat men finner en Sharpekvot något lägre än referensportföljens.

Place, publisher, year, edition, pages
2023. , p. 62
Series
TRITA-SCI-GRU ; 2023:334
Keywords [en]
Portfolio allocation, Covariance shrinkage, Convex optimisation, Regularised linear regression
Keywords [sv]
Portföljallokering, Kovarianskrympning, Konvex optimering, Regulariserad linjär regression
National Category
Other Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-344995OAI: oai:DiVA.org:kth-344995DiVA, id: diva2:1849045
External cooperation
Lynx Asset Management AB
Subject / course
Financial Mathematics
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2024-04-05 Created: 2024-04-05 Last updated: 2024-04-05Bibliographically approved

Open Access in DiVA

fulltext(7242 kB)365 downloads
File information
File name FULLTEXT01.pdfFile size 7242 kBChecksum SHA-512
4298275c689791a126dc467df21da563825aa4338c9cd25fa5256b2a9912d9a0f0d1052094b02b38fbcd007e88bead389120b7dec1e38c52e82633fac4529eaa
Type fulltextMimetype application/pdf

By organisation
Mathematics (Div.)
Other Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 365 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 744 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf