kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mathematical Modelling of Fund Fees
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Matematisk Modellering av Fondavgifter (Swedish)
Abstract [en]

The paper examines the impact of fees on the return of a fund investment using different simulation and fee structure models. The results show that fees have a significant expected impact, particularly for well-performing funds. Two simulation models were used, the Geometric Brownian Motion (GBM) model and Merton Jump Diffusion (MJD) model. Two fee structures were also analysed for each simulation, a High-water mark fee structure and a Hurdle fee structure. Comparing the GBM and MJD models, the two tend to generate very similar fee statistics even though the MJD model's day-to-day returns fit better with empirical data. When comparing the HWM and Hurdle fee models, larger differences are observed. While overall average fee statistics are similar, the performance fee statistics are significantly higher in the Hurdle fee structure for assets achieving higher returns, e.g. at least an 8% annual return. However, the HWM fee structure tends to generate higher performance fees for assets with low returns. Regression models are also developed for each combination of the simulation model and fee structure. The regression models reflect the above conclusions and can for investors serve as simple key indicators to estimate expected fund fee payments. The GBM regression results are likely more useful than the MJD regression results, as the parameters of the former are easier to calculate based on historical return data.

Abstract [sv]

Uppsatsen undersöker effekten av avgifter på avkastningen av en fondinvestering med hjälp av olika simuleringar och avgiftsmodeller. Resultaten visar att avgifter förväntas ha en betydande påverkan, särskilt för fonder som genererar hög avkastning. Två simuleringar användes, Geometric Brownian Motion (GBM) och Merton Jump Diffusion (MJD). Två avgiftsstrukturer analyserades också för varje simulering, en High-water mark avgiftsstruktur och en Hurdle avgiftsstruktur. Jämförelse mellan GBM och MJD-modellerna visar att de två tenderar att generera mycket liknande avgiftsstatistik trots att MJD-modellens dagliga avkastning passar bättre med empiriska data. Vid jämförelse av HWM- och Hurdle avgiftsmodellerna observeras större skillnader. Medan den övergripande genomsnittliga avgiftsstatistiken är liknande för avgiftsmodellerna, är resultatbaserade avgifterna betydligt högre i Hurdle avgiftsstrukturen för tillgångar som uppnår högre avkastning, t.ex. minst 8% årlig avkastning. Däremot tenderar HWM-avgiftsstrukturen att generera högre resultatbaserade avgifter för tillgångar med låg avkastning. Regressionsmodeller utvecklades också för varje kombination av simulering och avgiftsstruktur. Regressionmodellerna återspeglar ovanstående slutsatser och kan för investerare fungera som enkla nyckeltal för att uppskatta förväntad kostnad av fondavgifter. GBM-regressionsresultaten är sannolikt mer användbara än MJD-regressionsresultaten, eftersom parametrarna för den förra är lättare att beräkna baserat på historisk avkastningsdata.

Place, publisher, year, edition, pages
2023. , p. 73
Series
TRITA-SCI-GRU ; 2023:73
Keywords [en]
fund fees, mathematical modeling, simulations, geometric brownian motion, merton jump diffusion model
Keywords [sv]
fondavgifter, matematisk modellering, simuleringar, geometric brownian motion, merton jump diffusion modell
National Category
Other Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-345002OAI: oai:DiVA.org:kth-345002DiVA, id: diva2:1849084
External cooperation
Swedish Investment Fund Association
Subject / course
Financial Mathematics
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2024-04-05 Created: 2024-04-05 Last updated: 2024-04-05Bibliographically approved

Open Access in DiVA

fulltext(2231 kB)428 downloads
File information
File name FULLTEXT01.pdfFile size 2231 kBChecksum SHA-512
b7f263b24bfed797f43c33ecc6600d7d25e0608720afdf9dfd33284fd26e5c95eef6d44c287338ae7e5e5e67323ecdb036ba2c2292b32e211c7eff474edef191
Type fulltextMimetype application/pdf

By organisation
Mathematics (Div.)
Other Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 428 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 260 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf