kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Detection and Classification of Sparse Traffic Noise Events
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematical Statistics.
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematical Statistics.
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Detektering och klassificering av bullerhändelser från gles trafik (Swedish)
Abstract [en]

Noise pollution is a big health hazard for people living in urban areas, and its effects on humans is a growing field of research. One of the major contributors to urban noise pollution is the noise generated by traffic. Noise simulations can be made in order to build noise maps used for noise management action plans, but in order to test their accuracy real measurements needs to be done, in this case in the form of noise measurements taken adjacent to a road. The aim of this project is to test machine learning based methods in order to develop a robust way of detecting and classifying vehicle noise in sparse traffic conditions. The primary focus is to detect traffic noise events, and the secondary focus is to classify what kind of vehicle is producing the noise.

The data used in this project comes from sensors installed on a testbed at a street in southern Stockholm. The sensors include a microphone that is continuously measuring the local noise environment, a radar that detects each time a vehicle is passing by, and a camera that also detects a vehicle by capturing its license plate. Only sparse traffic noises are considered for this thesis, as such the audio recordings used are those where the radar has only detected one vehicle in a 40 second window. This makes the data gathered weakly labeled.

The resulting detection method is a two-step process: First, the unsupervised learning method k-means is implemented for the generation of strong labels. Second, the supervised learning method random forest or support vector machine uses the strong labels in order to classify audio features. The detection system of sparse traffic noise achieved satisfactory results. However, the unsupervised vehicle classification method produced inadequate results and the clustering could not differentiate different vehicle classes based on the noise data.

Abstract [sv]

Buller är en stor hälsorisk för människor som bor i stadsområden, och dess effekter på människor är ett växande forskningsfält. En av de största bidragen till stadsbuller är oljud som genereras av trafiken. Man kan utföra simuleringar i syfte att skapa bullerkartor som kan användas till planer för att minska dessa ljud. För att testa deras noggrannhet måste verkliga mätningar tas, i detta fall i formen av ljudmätningar tagna intill en väg. Syftet med detta projekt är att testa maskininlärningsmetoder för att utveckla ett robust sätt att detektera och klassificera fordonsljud i glesa trafikförhållanden. Primärt fokus ligger på att detektera bullerhändelser från trafiken, och sekundärt fokus är att försöka klassificera vilken typ av fordon som producerade ljudet.

Datan som används i detta projekt kommer från sensorer installerade på en testbädd på en gata i södra Stockholm. Sensorerna inkluderar en mikrofon som kontinuerligt mäter den lokala ljudmiljön, en radar som detekterar varje gång ett fordon passerar, och en kamera som också detekterar ett fordon genom att ta bild på dess registreringsskylt. Endast ljud från gles trafik kommer att beaktas och användas i detta arbete, och därför används bara de ljudinspelningar där radarn har upptäckt ett enskilt fordon under ett 40 sekunders intervall. Detta gör att den insamlade datan har svaga etiketter.

Den resulterande detekteringsmetoden är en tvåstegsprocess: För det första används den oövervakade inlärningsmetoden k-means för att generera starka etiketter. För det andra används de starka etiketterna av den övervakade inlärningsmetoden slumpmässig beslutsskog eller stödvektormaskin i syfte att klassificera ljudegenskaper. Detekteringssystemet av glest trafikljud uppnådde tillfredsställande resultat. Däremot producerade den oövervakade klassificeringsmetoden för fordonsljud otillräckliga resultat, och klustringen kunde inte urskilja mellan olika fordonsklasser baserat på ljuddatan.

Place, publisher, year, edition, pages
2023. , p. 73
Series
TRITA-SCI-GRU ; 2023:416
Keywords [en]
Noise pollution, Machine learning, Sound event detection, SED, Support vector machine, SVM, Random forest, RF, Decision tree, K-means clustering, Spherical k-means clustering, Traffic noise
Keywords [sv]
Buller, Maskininlärning, Ljudhändelsedetektering, Stödvektormaskin, SVM, Slumpmässiga beslutsskogar, RF, K-means klustring, Sfärisk k-means klustring, Trafikljud, Bullerhändelse
National Category
Other Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-345037OAI: oai:DiVA.org:kth-345037DiVA, id: diva2:1849176
Subject / course
Mathematical Statistics
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2024-04-08 Created: 2024-04-05 Last updated: 2024-04-08Bibliographically approved

Open Access in DiVA

fulltext(2279 kB)197 downloads
File information
File name FULLTEXT01.pdfFile size 2279 kBChecksum SHA-512
0a475236ec3b13292ba71a62c314b832669004bd1ae09c8953d128281796380fdf72aab0d9d2ad9302388aa085a71cc14c077df10f9a565c5943c4d6084a6260
Type fulltextMimetype application/pdf

By organisation
Mathematical Statistics
Other Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 197 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 327 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf