Open this publication in new window or tab >>2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
This doctoral thesis addresses the rapidly evolving landscape of computer security threats posed by advancements in artificial intelligence (AI), particularly large language models (LLMs). We demonstrate how AI can automate and enhance cyberattacks to identify the most pressing dangers and present feasible mitigation strategies. The study is divided into two main branches: attacks targeting hardware and software systems and attacks focusing on system users, such as phishing. The first paper of the thesis identifies research communities within computer security red teaming. We created a Python tool to scrape and analyze 23,459 articles from Scopus's database, highlighting popular communities such as smart grids and attack graphs and providing a comprehensive overview of prominent authors, institutions, communities, and sub-communities. The second paper conducts red teaming assessments of connected devices commonly found in modern households, such as connected vacuum cleaners and door locks. Our experiments demonstrate how easily attackers can exploit different devices and emphasize the need for improved security measures and public awareness. The third paper explores the use of LLMs to generate phishing emails. The findings demonstrate that while human experts still outperform LLMs, a hybrid approach combining human expertise and AI significantly reduces the cost and time requirements to launch phishing attacks while maintaining high success rates. We further analyze the economic aspects of AI-enhanced phishing to show how LLMs affect the attacker's incentive for various phishing use cases. The fourth study evaluates LLMs' potential to automate and enhance cyberattacks on hardware and software systems. We create a framework for evaluating the capability of LLMs to conduct attacks on hardware and software and evaluate the framework by conducting 31 AI-automated cyberattacks on devices from connected households. The results indicate that while LLMs can reduce attack costs, they do not significantly increase the attacks' damage or scalability. We expect this to change with future LLM versions, but the findings present an opportunity for proactive measures to develop benchmarks and defensive tools to control the misuse of LLMs.
Abstract [sv]
Moderna cyberattacker förändras snabbt som följd av framsteg inom artificiell intelligent (AI), särskilt via stora språkmodeller (LLM:er). Vi demonstrerar hur AI kan automatisera och förbättra cyberattacker för att identifiera de största hoten och presenterar strategier för att motverka dem. Studien är uppdelad i två delar: attacker riktade mot hårdvaru- och mjukvarusystem samt attacker fokuserade på systemanvändare, likt phishing. Avhandlingens första artikel identifierar forskningsgrupper inom red teaming. Vi skapade ett Python-verktyg för att hämta och analysera 23,459 artiklar från Scopus databas, vilket gav en översikt av framstående författare, institutioner och utvecklingen av olika grupper och sub-grupper inom forskningsområdet. Avhandlingens andra artikel genomför red teaming-tester av uppkopplade enheter från moderna hushåll, exempelvis uppkopplade dammsugare och dörrlås. Våra experiment visar hur lätt angripare kan hitta sårbarheter i enheter och betonar behovet av förbättrade säkerhetsåtgärder och ökad allmän medvetenhet. Den tredje artikeln utforskar användningen av LLMs för att generera phishing-meddelanden. Resultaten visar att mänskliga experter fortfarande presterar bättre än LLMs, men en hybridmetod som kombinerar mänsklig expertis och AI reducerar kostnaderna och tiden som krävs för att lansera nätfiskeattacker och behåller hög kvalitet i meddelandena. Den fjärde studien utvärderar LLM:ers potential att automatisera och förbättra cyberattacker på hårdvaru- och mjukvarusystem. Vi skapar ett ramverk för att utvärdera LLM:ers förmåga att genomföra attacker mot hårdvara och mjukvara och utvärderar ramverket genom att genomföra 31 AI-automatiserade cyberattacker på enheter från uppkopplade hushåll. Resultaten indikerar att LLM:er kan minska attackkostnaderna, men de medför inte en märkvärd ökning av attackernas skada eller skalbarhet. Vi förväntar oss att detta kommer att förändras med framtida LLM-versioner, men resultaten presenterar en möjlighet för proaktiva åtgärder för att utveckla riktmärken och försvarsverktyg för att kontrollera skadlig användning av LLMs.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. x, 71
Series
TRITA-EECS-AVL ; 2024:68
Keywords
Computer security, Red teaming, phishing, artificial intelligence, large language models
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-353243 (URN)9789181060409 (ISBN)
Public defence
2024-10-10, https://kth-se.zoom.us/j/61272075034, D31, Lindstedtsvägen 9, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
QC 20241004
2024-09-192024-09-182024-10-21Bibliographically approved