kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A divergence-free cut finite element discretization for the Stokes interface problem
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
En divergensfri skuren finita element diskretisering för Stokes interface problem (Swedish)
Abstract [en]

We introduce a new, accurate, stable, and divergence-free cut finite element discretization for the Stokes interface problem. The method is based on the Brezzi-Douglas-Marini-elements (\textbf{BDM}-elements). We provide analysis to demonstrate that the proposed scheme results in a pointwise divergence-free velocity field, and we prove consistency, continuity, coercivity, and an inf-sup result. 

Additionally, we present three numerical experiments that support the theoretical results. We utilize the element pair $(\textbf{BDM}_1, Q_0)$, that is, \textbf{BDM}$_1$-elements for the velocity and piecewise constant polynomials for the pressure. These numerical experiments show that the method is robust and attains an optimal convergence order of two for the velocity and one for the pressure

Abstract [sv]

Vi introducerar en ny, noggrann och divergensfri finita element diskretisering för Stokes ekvationer i fallet där det finns ett gränssnitt som skär genom nätet. Metoden är baserad på Brezzi-Douglas-Marini-elementen (\textbf{BDM}-element). Vi visar att våran metod resulterar i ett punktvis divergensfritt hastighetsfält, och vi bevisar konsistens, kontinuitet, koercitivitet och ett inf-sup-resultat. Dessutom presenterar vi tre numeriska experiment som stödjer de teoretiska resultaten. Vi använder elementparet $(\textbf{BDM}_1, Q_0)$ det vill säga \textbf{BDM}$_1$-element för hastigheten och styckvis konstanta polynom för trycket. De numeriska experimenten visar att metoden är robust och har konvergensordning två för hastigheten och ett för trycket

Place, publisher, year, edition, pages
2023. , p. 39
Series
TRITA-SCI-GRU ; 2023:397
National Category
Other Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-345171OAI: oai:DiVA.org:kth-345171DiVA, id: diva2:1849663
Subject / course
Scientific Computing
Educational program
Master of Science - Computer Simulation for Science and Engineering
Supervisors
Examiners
Available from: 2024-04-08 Created: 2024-04-08 Last updated: 2024-04-08Bibliographically approved

Open Access in DiVA

fulltext(16084 kB)296 downloads
File information
File name FULLTEXT01.pdfFile size 16084 kBChecksum SHA-512
0ec514bd7179a8571893fd07b15bdd3472397d3433d607c9056baccdeee9f43360aa0f71554de6fafe079617caac4b7539dc922b7c7cf51a4af202a16639e3ce
Type fulltextMimetype application/pdf

By organisation
Mathematics (Dept.)
Other Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 296 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 309 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf