kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Classifying Maximum Likelihood Degree for Small Colored Gaussian Graphical Models
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Klassifikation av Maximum Likelihood Graden av Små Färgade Gaussiska Grafiska Modeller (Swedish)
Abstract [en]

The Maximum Likelihood Degree (ML degree) of a statistical model is the number of complex critical points of the likelihood function. In this thesis we study this on Colored Gaussian Graphical Models, classifying the ML degree of colored graphs of order up to three. We do this by calculating the rational function degree of the gradient of the log- likelihood. Moreover we find that coloring a graph can lower the ML degree. Finally we calculate solutions to the homaloidal partial differential equation developed by Améndola et al. The code developed for these calculations can be used on graphs of higher orders.

Abstract [sv]

Maximum likelihood-graden (ML-graden) för en statistisk modell är antalet komplexa kritiska punkter för likelihoodfunktionen. I denna avhandling studerar vi detta på färgade Gaussiska grafiska modeller och klassificerar ML-graden för färgade grafer av ordning upp till tre. Detta görs genom att beräkna den rationella funktionsgraden för gradienten av logaritmen av likelihoodfunktionen. Dessutom finner vi att ML-graden av en graf kan minskas genom att färgläggas. Slutligen beräknar vi lösningar till den homaloidala partiella differentialekvationen utvecklad av Améndola et al. Den kod som utvecklats för dessa beräkningar kan användas på grafer av högre ordning.

Place, publisher, year, edition, pages
2023. , p. 20
Series
TRITA-SCI-GRU ; 2023:468
Keywords [en]
Algebraic Statistics, Gaussian Graphical Models, Maximum Likelihood Degree
Keywords [sv]
Algebraisk Statistik, Gaussiska Grafiska Modeller, Maximum Likelihood Grad
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-345203OAI: oai:DiVA.org:kth-345203DiVA, id: diva2:1850032
Subject / course
Mathematics
Educational program
Master of Science - Mathematics
Supervisors
Examiners
Available from: 2024-05-08 Created: 2024-04-09 Last updated: 2024-05-08Bibliographically approved

Open Access in DiVA

fulltext(371 kB)72 downloads
File information
File name FULLTEXT01.pdfFile size 371 kBChecksum SHA-512
5e8c25c3051270c4cb281d6189d166f346092a328fcb5092cca51aef37163e2f8b95507caadbd8433c4ba39ff3575016688a2046f7e027e83e402933be9d92ac
Type fulltextMimetype application/pdf

By organisation
Mathematics (Div.)
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 72 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 217 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf