Most wireless communication systems operate in the far-field region of antennas and antenna arrays, where waves are planar and beams have infinite depth. When antenna arrays become electrically large, it is possible that the receiver is in the radiative near-field of the transmitter, and vice versa. Recent works have shown that near-field beamforming exhibits a finite depth, which enables a new depth-based spatial multiplexing paradigm. In this paper, we explore how the shape and size of a rectangular array determine the near-field beam behaviors. In particular, we investigate the 3 dB beam depth (BD), defined as the range of distances where the gain is greater than half of the peak gain. We derive analytical gain and BD expressions and prove how they depend on the aperture area and length. The largest BD is obtained for a square array while the smallest BD is obtained by a uniform linear array.
QC 20240415
Part of ISBN 979-8-3503-1090-0