kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Software Performance of the ATLAS Track Reconstruction for LHC Run 3
CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0001-9415-7903
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0009-0004-1439-5151
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0003-3867-0336
Show others and affiliations
Number of Authors: 29392024 (English)In: Computing and Software for Big Science, E-ISSN 2510-2044, Vol. 8, no 1, article id 9Article in journal (Refereed) Published
Abstract [en]

Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pile-up) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two.

Place, publisher, year, edition, pages
Springer Nature , 2024. Vol. 8, no 1, article id 9
National Category
Subatomic Physics
Identifiers
URN: urn:nbn:se:kth:diva-345733DOI: 10.1007/s41781-023-00111-yScopus ID: 2-s2.0-85189516943OAI: oai:DiVA.org:kth-345733DiVA, id: diva2:1852509
Note

QC 20240418

Available from: 2024-04-18 Created: 2024-04-18 Last updated: 2024-04-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Leopold, AlexanderLundberg, OlofLund-Jensen, BengtOhm, ChristianShaheen, RabiaStrandberg, Jonas

Search in DiVA

By author/editor
Leopold, AlexanderLundberg, OlofLund-Jensen, BengtOhm, ChristianShaheen, RabiaStrandberg, Jonas
By organisation
Particle and Astroparticle Physics
Subatomic Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf