kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Application of Hydrochar for Low-CO2 Emission Steel Production
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Process. (Unit of Process)ORCID iD: 0000-0001-6554-0567
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Steel is an indispensable material of the modern society and yet the production of steel is one of the largest anthropogenic CO2 emission sources on the planet. The conventional blast-furnace-basic-oxygen-furnace (BOF) process is responsible for generating 85% of the steel industry’s total CO2 emissions, which is the result of a high coal consumption rate for the reduction of iron ores and for providing the heat necessary for the high-temperature process. In order to meet the climate goal set by the Paris Agreement, the iron and steel industry must drastically decrease its CO2 emissions and aim at achieving net-zero emissions by 2050. Bioenergy is a form of renewable energy, and if it is managed sustainably throughout its life cycle, it can be considered carbon-neutral. Replacing fossil fuels with biofuels consumed during the steelmaking processes is one way to decrease CO2 emissions. However, this approach has not been widely adopted by steelmakers over the world due to the high price and the limited availability of wood-based biofuels. Hydrochar is a coal-like solid material that is produced from the hydrothermal carbonization (HTC) of biomass. It has attracted great interest from steelmakers due to its coal-like properties and the fact that it can be produced from a wide range of organic waste streams that can be found in almost every country. Previous studies focused on the use of hydrochar for the blast furnace process. This thesis therefore examines the potential use of hydrochar in the direct-reduction-electric-arc-furnace (DR-EAF) process, and particularly in two applications where the use of fossil coal is difficult to abate—the coal-based direct reduction of iron ore and the carburization of liquid steel in the EAF. This thesis begins with a characterization study of a hydrochar produced from lemon peel waste (LPH) and its comparison with a fossil reference material (anthracite) and two bio-reference materials (charcoal). The results reveal that LPH is a highly volatile material that is characterized by a low fixed carbon content and a medium calorific value. The volatile matter of LPH consists of gas, tar, and aqueous liquids, and contains approximately half of the total carbon and energy content of LPH. On the contrary, charcoal, anthracite, and the pyrolyzed char of LPH (PLPH) hardly emit any volatiles and are stable up to a high temperature (1200 °C). These materials are characterized by high fixed carbon contents and high calorific values, which makes them ideal fuel, carburizers, and reducing agents. On the other hand, LPH seems to be more efficient when it is applied in areas where its volatile matter content could be utilized to an advantage, such as to provide heating energy and to reduce metal oxides. Next, two hydrochars (produced from lemon peel and rice husk) were tested for coal-based direct reduction and their performance were compared to that of anthracite. Hematite-carbon mixtures prepared with varying fixed-carbon-to-oxygen ratios (C/O) were heated in nitrogen atmosphere up to 1100 °C for direct reduction. The hematite in briquettes with molar C/O ratios greater than 1.0 were completely reduced to metallic iron, whereas briquettes with C/O ratios equal to 0.4-0.5 were reduced by 63-86%. It was confirmed that the volatile matter released by the carbonaceous materials and the organic binder reduced hematite up to a maximum of 35% but the utilized fractions of the volatile matter were quite low (12-56%). As a result, the reduction of hematite was dominated by carbothermic reduction which involved fixed carbon. Thus, the efficiency of a carbonaceous material as a reducing agent for the coal-based direct reduction processes is still predominantly determined by its fixed carbon content. Then, LPH was tested for carburization of liquid iron in a laboratory setup under an inert atmosphere and its performance was compared with that of charcoal. Iron-carbon briquettes, which have higher apparent densities than the carbonaceous material itself, were utilized as carburizers with an aim to improve the carbon’s penetration depth in the liquid iron. The briquettes were experimented in two different ways to simulate the carbon addition practices in an EAF. With the first method, the briquettes were slowly heated from room temperature up to 1600 °C, which simulates the loading of carbon into an EAF at the beginning of a heat via a scrap bucket. With the second method, briquettes were directly charged into a pool of liquid iron. The results reveal that the carburization yield is predominantly determined by the fixed carbon content of the carbonaceous material, and when a more aggressive carbon addition method (e.g. direct charging) was used, there were additional carbon losses which lowered the yield.  In the final part of the thesis, two types of hydrochars (those produced from orange peel and green waste) and an anthracite were applied for carburization tests in a pilot-scale EAF. Carbonaceous materials were either top-charged into the EAF at the beginning of a heat, or injected as powder via a lance directly into liquid steel after scrap meltdown. The results show that hydrochar and anthracite has a similar carburization yield (based on fixed carbon) when the same carbon addition method was used, and the carburization yields achieved by top-charging were higher than that achieved by lance injection. Based on the results obtained in this thesis, three main conclusions are drawn. Firstly, hydrochar can completely replace fossil coal as a reducing agent for the direct reduction of iron ores and as a carburizing agent in the EAF process. However, it is more efficient to use pyrolyzed hydrochar than to use pristine hydrochar since the fixed carbon content of the material mostly determines its substitution ratio for anthracite. Secondly, some negative impact of the ash content of hydrochar has been identified in this study. For example, the reduction rate of hematite-carbon composite mixture is lowered by the hindering effect of ash on carbothermic reduction. Furthermore, ash increases the slag volume and decreases the slag’s basicity in the EAF. Hydrochars produced from fruit peel wastes (lemon peel, orange peel) have lower ash contents than hydrochars produced from plant wastes (rice husk, green waste) and are more suitable to be applied directly in steelmaking processes. Lastly, the substitution of anthracite with charcoal or hydrochar lowers the total amount of sulfur introduced into the EAF. The increase in the amount of phosphorous introduced into the EAF resulting from the addition of hydrochar can be resolved either by controlling the amount of hydrochar added, or by lowering the phosphorous content of hydrochar through additional impurity reduction treatment following the HTC process, which should be investigated in future studies. 

Abstract [sv]

Stål är ett oumbärligt material i det moderna samhället, men produktionen av stål representerar samtidigt en av de största antropogena CO2-utsläppskällorna på planeten. Den konventionella processen som kombinerar en masugn med en konverter genererar 85 % av stålindustrins totala CO2-utsläpp. Detta är orsakat av en hög kolförbrukningshastighet för att reducera järnmalm och för att tillhandahålla den värme som krävs för denna högtemperaturprocess. För att klara klimatmålen i Parisavtalet måste stålindustrin drastiskt minska sina CO2-utsläpp och sikta på att uppnå nettonollutsläpp till 2050. Bioenergi är en form av förnybar energi, som om den hanteras på ett hållbart sätt under hela sin livscykel, kan betraktas som koldioxidneutral. Därför är det positivt att ersätta fossila bränslen med biobränslen som förbrukas under ståltillverkningsprocesserna i syfte att minska CO2-utsläppen. Detta tillvägagångsätt har dock inte använts i stor utsträckning av ståltillverkare i världen, på grund av det höga priset och den begränsade tillgågen på träbaserade biobränslen. Hydrochar är ett kolliknande fast material som framställs från en hydrotermisk förkolning av biomassa. Materialet har uppmärksammats av ståltillverkare på grund av dess kolliknade egenskaper och det faktum att det kan produceras från ett brett utbud av organiska avfall som finns tillgängligt i nästan alla länder. Tidigare studier har fokuserat på användningen av hydrochar för masugnsprocessen, medan denna avhandling fokuserar på att studera den potentialla användningen av hydrochar i electriska ljusbågsugnar som chargeras med direktreduktionspellets (DR-EAF). Dessutom för speciellt två tillämpningar där användningen av fossilt kol är svår att minska, nämligen den kolbaserade direkta reduktionen av järnmalm och uppkolningen av flytande stål i ljusbågsugnen. Inledningsvis så presenteras resultaten av en karaktäriseringsstudie av hydrochar framställt från citronskalsavfall (LPH) och resultaten jämförs med ett fossilt referensmaterial (antracit) och två bioreferensmaterial (träkol). Överlag, så visar resultaten att LPH är ett mycket flyktigt material som kännetecknas av en låg fast kolhalt och ett medelhögt värmevärde. Det flykthalt i LPH består av gas, tjära och vattenhaltiga vätskor som innehåller ungefär hälften av det totala kol-och energiinnehållet i LPH. I motsats till träkol och antracit så avger den pyrolyserade LPH (PLPH) knappt några flykthalten och materialen är stabila upp till en hög temperatur (1200 °C). Detta material kännetecknas av höga fasta kolhalter och höga värmevärden, vilket gör det idealiskt för användning som bränslen, uppkolningsmedel och reduktionsmedel. Å andra sidan tycks LPH vara mer effektiv när det används i områden där dess flykthalt skulle kunna utnyttjas till fördel, såsom för att bidra med värmeenergi och för att reducera metalloxider. Försök genomfördes med användning av två olika hydrochar (framställda från citronskal och risskal) för en kolbaserad direkt reduktion, och resultaten jämfördes med resultat från försök med användning av antracit. Hematit-kolblandningar framställda med varierande kol/syre-molarförhållande (C/O) värmdes i en kväveatmosfär upp till en temperatur av 1100 °C för att åstadkomma en direkt reduktion. Resultaten visar att hematiten i briketter med molära C/O- förhållanden större än 1,0 reducerades fullständigt till metalliskt järn, medan briketter med C/O- förhållanden inom intervallent 0,4-0,5 uppnådde 63-86% reduktionsgrader. Det bekräftades att den flyktighet som frigjordes av det kolväte och det organiska bindemedlet reducerade hematit upp till maximalt 35%, men de utnyttjade fraktionerna av den flyktigheten är ganska låga. Som ett resultat domineras reduktionen av hematit av reaktioner som involverar fasta kolhalt. Därmed så bestäms effektiviteten hos ett kolhaltigt material som reduktionsmedel för de kolbaserade direktreduktionsprocesserna fortfarande till övervägande del av dess fasta kolhalt. Laboratorieförsök genomfördes också där LPH användes för uppkolning av flytande stål i en inert atmosfär och resultaten jämfördes med prestandan hos träkol. Järn-kol briketter, som har en högre skenbara densitet än det kolhaltiga materialet, användes som uppkolningsmedel i syfte att förbättra kolets penetrationsdjup i det flytande stålet. Briketterna tillsattes med användande av två olika metoder för att simulera tillsats av kol i en industriell ljusbågsugn. I den första metoden värmdes briketterna långsamt upp från rumstemperatur till en temperatur av 1600 °C, vilket simulerar tillsatsen av kol i en skrotkorg i början av processen. I den andra metoden tillsattes briketter direkt i flytande stål. Resultaten visar att uppkolningsutbytet huvudsakligen bestäms av den fasta kolhalten i det kolhaltiga materialet samt av tillsatsmetoden. När tillsatser gjordes till flytande stål (metod 2), uppstod ytterligare kolförluster som sänkte uppkolningsutbytet. I den sista delen av avhandlingen användes två typer av hydrochar (främstallda av apelsinskal och grönt avfall) samt antracit för uppkolningstester i en pilotskala av en ljusbågsugn. De kolhaltiga materialen tillsattes i ljusbågsugnen antingen i början av processen från toppen eller efter att skrotet var smält, genom en lansinjektion direkt i det flytande stålet. Pilotresultaten visar att hydrochar och antracit har ett liknande uppkolningsutbyte (basera på mängden av fast kolhalt) när samma koltillsatsmetod användes. Dessutom visade resultaten att ett högre uppkolningsutbytet uppnådes vid en tidig tillsats i processen jämfört med vid en senare processtillsats via en lansinjection. Baserat på resultaten i denna avhandling kan tre huvudsakliga slutsatser dras. För det första, så kan hydrochar helt ersätta fossilt kol som ett reduktionsmedel för att åstadkomma en direkt reduktion av järnmalm och som ett uppkolningsmedel i ljusbågsugnar. Det är dock mer effektivt att använda pyrolyserat hydrochar än att använda det ursprungliga hydrochar, eftersom det fasta kolhaltet i materialet bestämmer dess substitutionsförhållande för antracit. För det andra så har en viss negativ påverkan av askhalt i hydrochar identifierats. Detta resulterar i att reduktionshastigheten för hematit-kolkomposit sänks på grund av askans negativa effekt på den karbotermiska reduktionen. Dessutom ökar askhalt slaggvolymen och minskar slaggens basicitet i ljusbågsugnen. Resultaten visar också att hydrochar som framställts av fruktavfall (citronskal, apelsinskal) har en lägre askhalt än hydrochar som framställts av växtavfall (risskal, grönt avfall). Därmed är den förstnämnda mer lämpad att användas vid ståltillverkning. Resultaten visar också att om antracit ersätts med träkol eller hydrochar så minskar den totala mängden svavel som tillförs stålet i ljusbågsugnen, vilket är positivt. Slutligen så visar resultaten att forsforhalten i stålet ökar på grund av utnyttjandet av hydrochar. En möjlig lösning till detta problem är att noggrant välja råvaran för produktion av hydrochar eller genom att sänka fosforhalten i hydrochar genom ytterligare rening, men denna hypotes bör undersökas i framtida studier. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. , p. 137
Series
TRITA-ITM-AVL ; 2024:13
Keywords [en]
Hydrochar, hydrothermal carbonization, low-CO2 steelmaking, direct reduction, anthracite, charcoal, electric arc furnace
Keywords [sv]
Hydrochar, hydrotermisk karbonisering, låg-CO2 ståltillverkning, direkt reduktion, antracit, träkol, ljusbågsugn.
National Category
Materials Engineering
Research subject
Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-345975ISBN: 978-91-8040-909-4 (print)OAI: oai:DiVA.org:kth-345975DiVA, id: diva2:1854782
Public defence
2024-05-31, Sefström (M131) / https://kth-se.zoom.us/webinar/register/WN_ZxnjxLZcRoSwr_R8S7MW4Q, Brinellvägen 23, Stockholm, 10:00 (English)
Opponent
Supervisors
Projects
OSMET 3.0
Funder
Vinnova, 2020-04140Available from: 2024-04-30 Created: 2024-04-26 Last updated: 2024-05-22Bibliographically approved
List of papers
1. Applications of Hydrochar and Charcoal in the Iron and Steelmaking Industry—Part 1: Characterization of Carbonaceous Materials
Open this publication in new window or tab >>Applications of Hydrochar and Charcoal in the Iron and Steelmaking Industry—Part 1: Characterization of Carbonaceous Materials
Show others...
2022 (English)In: Sustainability, E-ISSN 2071-1050, Vol. 14, no 15, p. 9488-9488Article in journal (Refereed) Published
Abstract [en]

The iron and steelmaking industry faces the dilemma of the need to decrease their greenhouse gas emissions to align with decarbonization goals, while at the same time fulfill the increasing steel demand from the growing population. Replacing fossil coal and coke with biomass-based carbon materials reduces the net carbon dioxide emissions. However, there is currently a shortage of charcoal to fully cover the demand from the iron and steelmaking industry to achieve the emission-reduction goals. Moreover, the transportation and energy sectors can compete for biofuel usage in the next few decades. Simultaneously, our society faces challenges of accumulation of wastes, especially wet organic wastes that are currently not reused and recycled to their full potentials. Here, hydrothermal carbonization is a technology which can convert organic feedstocks with high moisture contents to solid fuels (hydrochar, one type of biochar) as an alternative renewable carbon material. This work studied the differences between a hydrochar, produced from lemon peels (Lemon Hydrochar), and two types of charcoals (with and without densification) and an Anthracite coal. Characterizations such as chemical and ash compositions, thermogravimetric analyses in nitrogen and carbon dioxide atmospheres, scanning electron microscope analyses of carbon surface morphologies, and pyrolysis up to 1200 °C were performed. The main conclusions from this study are the following: (1) hydrochar has a lower thermal stability and a higher reactivity compared to charcoal and Anthracite; (2) densification resulted in a reduction of the moisture pickup and CO2 reactivity of charcoal; (3) pyrolysis of Lemon Hydrochar resulted in the formation of a large amount of tar (17 wt%) and gas (39 wt%), leading to its low fixed carbon content (27 wt%); (4) a pyrolyzed hydrochar (up to 1200 °C) has a comparable higher heating value to those of charcoal and Anthracite, but its phosphorous, ash, and alkalis contents increased significantly; (5) based on the preliminary assessment, hydrochar should be blended with charcoal or Anthracite, or be upgraded through slow pyrolysis to fulfill the basic functions of carbon in the high-temperature metallurgical processes.

Place, publisher, year, edition, pages
Basel, Switzerland: MDPI, 2022
Keywords
greenhouse gas emissions; biomass; charcoal; hydrothermal carbonization; hydrochar; low CO2 steelmaking
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-345651 (URN)10.3390/su14159488 (DOI)000839429900001 ()2-s2.0-85129699865 (Scopus ID)
Projects
OSMET 3.0
Funder
Vinnova, 2020-04140
Note

QC 20240416

Available from: 2024-04-16 Created: 2024-04-16 Last updated: 2024-04-26Bibliographically approved
2. Direct Reduction of Iron Ore Pellets by Using CO/CO2 and CO Gases
Open this publication in new window or tab >>Direct Reduction of Iron Ore Pellets by Using CO/CO2 and CO Gases
2023 (English)In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 95, no 3Article in journal (Refereed) Published
Abstract [en]

Gas-based direct reduction in a shaft furnace is the dominant process in the world for production of direct reduced iron. As fresh reducing gas passes through the iron ore burden, it is diluted by the gas emitted from the reacted iron ores which decreases the reduction potential of the reducing gas. Previous reduction experiments mostly used single pellet which could not examine this phenomenon. In this study, hematite pellets arranged in multiple layers inside a molybdenum basket are reduced isothermally at 1173–1273 K using 50% CO + 50% CO2% and 100% CO gases under flow rates of 0.2–5.0 NL min−1 to simulate the dilution of CO by CO2 in the shaft. It is discovered that the reduction of pellets in the basket is highly uneven even in pure CO atmosphere. Pellets in the middle layer are reduced ≈2 times less than the pellets in the top and bottom layers. The top side of a pellet is also less reduced than the bottom side facing the gas inlet. During melting of incompletely reduced pellets at 1873 K, intensive interaction between the unreduced iron oxides and the alumina crucible was observed. Thus, smelting of incompletely reduced iron could potentially shorten the refractory lifetime.

Place, publisher, year, edition, pages
Weinheim, Germany: Wiley-VCH Verlagsgesellschaft, 2023
Keywords
carbon monoxide, direct reduced iron, incompletely reduced iron, iron ore pellet, low CO2 steelmaking
National Category
Metallurgy and Metallic Materials
Research subject
Metallurgical process science
Identifiers
urn:nbn:se:kth:diva-345650 (URN)10.1002/srin.202300634 (DOI)001134496800001 ()2-s2.0-85180849422 (Scopus ID)
Projects
OSMET 3.0
Funder
Vinnova, 2021‐04660
Note

QC 20240416

Available from: 2024-04-16 Created: 2024-04-16 Last updated: 2024-04-26Bibliographically approved
3. Comparison of Hydrochar and Anthracite as Reducing Agents for Direct Reduction of Hematite
Open this publication in new window or tab >>Comparison of Hydrochar and Anthracite as Reducing Agents for Direct Reduction of Hematite
2024 (English)In: ISIJ International, ISSN 0915-1559, E-ISSN 1347-5460, Vol. 64, no 6, p. 978-987, article id ISIJINT-2023-436Article in journal (Refereed) Published
Abstract [en]

The substitution of fossil coal with biocarbon in the metallurgical processes can help to decrease fossil CO2 emissions. Biocarbon’s characteristics, such as high volatile matter contents and high reactivities with CO2, are beneficial for increasing the reduction degrees and reduction rates of iron oxides in carbon composite agglomerates (CCA). This study compared the reduction of hematite by of two types of carbonaceous materials (CM): hydrochar (high-volatile biocarbon) and anthracite (a low-volatile coal) in the form of CCA. CM, hematite, and binder (starch) were mixed together to obtain mixtures with C/O molar ratios equal to 0.4–1.2. The mixtures were reduced non-isothermally in nitrogen atmosphere up to 1003 K or 1373 K. Up to 1003 K, the volatiles released from CMs and starch reduced hematite by 18–35%. Between 1003 K and 1373 K, both hydrochars (produced from lemon peels and rice husks) reacted with iron oxides more rapidly than anthracite below 1360 K, when the samples had C/O ratios in the range of 1.0–1.2. In this temperature range, rice husk hydrochar promoted a slower reaction with iron oxides than lemon peel hydrochar, which was possibly influenced by its higher ash content which decreased the rate of Boudouard reaction. Samples with C/O ≥ 1.0 achieved complete reduction at 1373 K, regardless of the type of CM used, whereas samples with C/O equal to 0.4–0.5 achieved 63–86% reduction. It can be concluded from this study that hydrochar can fully substitute anthracite for direct reduction of iron oxide to decrease fossil CO2 emissions during ironmaking processes.

Place, publisher, year, edition, pages
Tokyo, Japan: Iron and Steel Institute of Japan, 2024
Keywords
direct reduction of iron, carbothermic reduction, carbon composite agglomerates, hydrochar, anthracite, biocarbon, volatile matter
National Category
Metallurgy and Metallic Materials
Research subject
Metallurgical process science; Metallurgical process science
Identifiers
urn:nbn:se:kth:diva-345649 (URN)10.2355/isijinternational.isijint-2023-436 (DOI)001248242500011 ()2-s2.0-85192161980 (Scopus ID)
Funder
Vinnova, 2020-04140
Note

QC 20240702

Available from: 2024-04-16 Created: 2024-04-16 Last updated: 2024-07-02Bibliographically approved
4. Applications of Hydrochar and Charcoal in the Iron and Steelmaking Industry—Part 2: Carburization of Liquid Iron by Addition of Iron–Carbon Briquettes
Open this publication in new window or tab >>Applications of Hydrochar and Charcoal in the Iron and Steelmaking Industry—Part 2: Carburization of Liquid Iron by Addition of Iron–Carbon Briquettes
2022 (English)In: Sustainability, E-ISSN 2071-1050, Vol. 14, no 9, p. 5383-5383Article in journal (Refereed) Published
Abstract [en]

Hydrochar (a solid product from hydrothermal carbonization of organic feedstock) and charcoal have the potential to substitute coke and coal consumption in the iron and steelmaking processes for reduction of greenhouse gas (GHG) emissions. Among steelmaking processes, melt carburization is an important but less-studied application. In this study, briquettes produced with mixture a of iron powder, hydrochar or charcoal powder, and binder were tested as iron melt recarburizers. It was found that the hydrochar briquettes have good mechanical properties, whereas those of charcoal briquettes were poor. Melt carburization with briquettes was performed in a lab induction furnace (10 kg) in two steps: firstly, by heating up some briquettes with charged electrolytic iron from room temperature up to 1600 °C, followed by the addition of some briquettes into the melt. Recarburization efficiency (RE) during the first step of carburization was found to be controlled by the amount of carbon content bound in the solid phase (fixed carbon) determined at 1200 °C. Thus, the REs of charcoal briquettes (70–72%) were higher than those of hydrochar (43–58%) due to the higher fixed carbon contents in charcoal. REs obtained from the second step were strongly affected by the amount of briquette losses during their addition into the iron melt, which correlate with the mechanical strengths of the briquettes. Thus, the REs for hydrochar briquettes (48–54%) were higher than those of charcoal (26–39%). This study proves the feasibility of using hydrochar and charcoal as liquid steel recarburizers.

Place, publisher, year, edition, pages
Basel, Switzerland: MDPI AG, 2022
Keywords
greenhouse gas emissions, EAF, briquettes, carburization, hydrochar, charcoal, recarburization efficiency
National Category
Metallurgy and Metallic Materials
Research subject
Metallurgical process science
Identifiers
urn:nbn:se:kth:diva-345648 (URN)10.3390/su14095383 (DOI)000795336600001 ()2-s2.0-85129729455 (Scopus ID)
Projects
OSMET 3.0
Funder
Vinnova, 2020-04140
Note

QC 20240416

Available from: 2024-04-16 Created: 2024-04-16 Last updated: 2024-04-26Bibliographically approved
5. A Pilot Trial Investigation of Using Hydrochar Derived from Biomass Residues for EAF Process
Open this publication in new window or tab >>A Pilot Trial Investigation of Using Hydrochar Derived from Biomass Residues for EAF Process
2023 (English)In: The Minerals, Metals & Materials Series, ISSN 2367-1181, p. 153-163Article in journal (Refereed) Published
Abstract [en]

Biocarbon will play an important role to achieve a carbon neutral and sustainable steel industry. In this study, three hydrochars (one type of biocoal produced via the hydrothermal carbonization process) derived from orange peel, green waste and rice husk were tested in a 10-ton test-bed EAF (electric arc furnace). These hydrochars were added to EAF via injection and top-charge as carburizer to substitute anthracite. The obtained liquid slag composition after scrap meltdown is favorable for the desulphrization process. Moreover, a higher carburization yield was achieved by top charging of hydrochar into EAF at the beginning of the heat. The final P and S of liquid steel with addition of hydrochars were controlled to acceptable levels. Some perspectives of using hydrochar for EAF steelmaking are also presented.

Place, publisher, year, edition, pages
Springer Nature, 2023
Keywords
EAF, hydrochar, carburizer
National Category
Metallurgy and Metallic Materials
Research subject
Metallurgical process science
Identifiers
urn:nbn:se:kth:diva-345647 (URN)10.1007/978-3-031-22634-2_15 (DOI)2-s2.0-85151045743 (Scopus ID)
Conference
TMS Annual Meeting & Exhibition, San Fransisco, March 19-23, 2023
Projects
OSMET 3.0
Funder
Vinnova, 2020-04140
Note

QC 20240416

Available from: 2024-04-16 Created: 2024-04-16 Last updated: 2025-03-21Bibliographically approved

Open Access in DiVA

fulltext(5546 kB)784 downloads
File information
File name FULLTEXT01.pdfFile size 5546 kBChecksum SHA-512
7e96cf52a5ed3c97383ded82eb4a1ab0e7295ae63c7f05a6785c2ad680673fe951e07d82416cb20984f16cf180e77b87219e4ee47b5c46ffafaca5e839da4bc9
Type fulltextMimetype application/pdf

Authority records

Lu, Yu-Chiao

Search in DiVA

By author/editor
Lu, Yu-Chiao
By organisation
Process
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 790 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2137 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf