kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enhancing Drone Spectra Classification: A Study on Data-Adaptive Pre-processing and Efficient Hardware Deployment
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Focusing on the problem of Drone vs. Unknown classification based on radar frequency-amplitude spectra using Deep Learning (DL), especially 1-Dimensional Convolutional Neural Networks (1D-CNNs), this thesis aims at reducing the current gap in the research related to adequate pre-processing techniques for hardware deployment. The primary challenge tackled in this work is determining a pipeline that facilitates industrial deployment while maintaining high classification metrics. After presenting a comprehensive review of existing research on radar signal classification and the application of DL techniques in this domain, the technical background of signal processing is described to provide a practical scenario where the solutions could be implemented. A thorough description of technical constraints, such as Field Programmable Gate Array (FPGA) data type requirements, follows the entire project justifying the necessity of a learning-based pre-processing technique for highly skewed distributions. The results demonstrate that data-adaptive preprocessing eases hardware deployment and maintains high classification metrics, while other techniques contribute to noise and information loss. In conclusion, this thesis contributes to the field of radar frequency-amplitude spectra classification by identifying effective methods to support efficient hardware deployment of 1D-CNNs, without sacrificing performance. This work lays the foundation for future studies in the field of DL for real-world signal processing applications.

Abstract [sv]

Med fokus på problemet med klassificering av drönare kontra okänt baserat på radarfrekvens-amplitudspektra med Deep Learning (DL), särskilt 1-Dimensional Convolutional Neural Networks (1D-CNNs), syftar denna avhandling till att minska det nuvarande gapet i forskningen relaterad till adekvata förbehandlingstekniker för hårdvarudistribution. Den främsta utmaningen i detta arbete är att fastställa en pipeline som underlättar industriell driftsättning samtidigt som höga klassificeringsmått bibehålls. Efter en omfattande genomgång av befintlig forskning om klassificering av radarsignaler och tillämpningen av DL-tekniker inom detta område, beskrivs den tekniska bakgrunden för signalbehandling för att ge ett praktiskt scenario där lösningarna kan implementeras. En grundlig beskrivning av tekniska begränsningar, såsom krav på datatyper för FPGA (Field Programmable Gate Array), följer hela projektet och motiverar nödvändigheten av en inlärningsbaserad förbehandlingsteknik för mycket skeva fördelningar. Resultaten visar att dataanpassad förbehandling underlättar hårdvaruimplementering och bibehåller höga klassificeringsmått, medan andra tekniker bidrar till brus och informationsförlust. Sammanfattningsvis bidrar denna avhandling till området klassificering av radarfrekvens-amplitudspektra genom att identifiera effektiva metoder för att stödja effektiv hårdvarudistribution av 1D-CNN, utan att offra prestanda. Detta arbete lägger grunden för framtida studier inom området DL för verkliga signalbehandlingstillämpningar.

Place, publisher, year, edition, pages
2023. , p. 50
Series
TRITA-EECS-EX ; 2023:556
Keywords [en]
Deep Learning, Adaptive Pre-processing, 1D-CNN, Radar, Spectrum, micro-Doppler, Signal Processing, Hardware Deployment, Drone, Unmanned Aerial Vehicle, FPGA
Keywords [sv]
Djupinlärning, Adaptiv Förbehandling, 1D-CNN, Radar, Spektrum, mikro-Doppler, Signalbehandling, Hårdvarudistribution, Drönare, Obemannad Luftfarkost, FPGA
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-346204OAI: oai:DiVA.org:kth-346204DiVA, id: diva2:1856407
Supervisors
Examiners
Available from: 2024-05-13 Created: 2024-05-06 Last updated: 2024-05-13Bibliographically approved

Open Access in DiVA

fulltext(2074 kB)227 downloads
File information
File name FULLTEXT01.pdfFile size 2074 kBChecksum SHA-512
cd2f7a2271999edfe2f630b8e31409b22ab926d43ffe34ab37b0fc7ec98633a1037473ba46415c450a08d719cc7ca1169e86e69f989e3df1b8db5a5d97101645
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 228 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 236 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf