kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Non-premixed combustion modelling and its applications: Numerical and experimental aspects
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Process Technology.ORCID iD: 0000-0002-7187-048X
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The society depends on combustion reactions to provide many of our most basic needs, such as heat, light, and transportation. Understanding combustion processes is crucial for mitigating the impact of emissions on the environment and climate change, which pose health risks to populations worldwide. This thesis describes the studies of the complexities of fluid dynamics, kinetics, combustion, and soot modelling in various burner configurations.

While established models like the k-ε turbulent model offer simplicity, alternative models such as the transition SST model show promise in capturing swirl flow dynamics, although with increased computational demands. Kinetics and combustion modelling strategies vary, with the probability density function (PDF) approach proving effective in determining flame positions and temperature ranges. Detailed kinetic mechanisms with real-time fluid dynamics enhance the understanding of combustion dynamics and species behaviour. Soot modelling confronts challenges in predicting particle size distributions accurately, highlighting the limitations of commercial modelling packages. Restructuring geometric representations to one dimension enhances the incorporation of complex soot and combustion models, leading to improved predictions using fewer computational resources.

The work emphasizes the need for robust modelling modules validated across diverse combustion conditions and underscores the ongoing quest for stronger links between academic studies and industrial applications. Finally, the work provides insights into CFD modelling complexities in combustion systems, highlighting the necessity of continued refinement and validation of modelling approaches to bridge theoretical studies with practical applications.

Abstract [sv]

Dagens samhälle är starkt beroende av förbränningsreaktioner för att tillhandahålla många av våra mest grundläggande behov, såsom värme, ljus och transport. Förståelsen av förbränningsprocesser är därför avgörande för att minska effekterna av utsläpp på miljön och klimatförändringar, vilket utgör hälsorisker för människor över hela världen. Den föreliggande studien tittar på komplexiteten i strömningsmekanik, kinetik, förbränning och sot modellering i olika brännarkonfigurationer.

Då etablerade modeller, som tex. den turbulenta modellen k-ε, ofta erbjuder en enkelhet i användandet, så visar alternativa modeller, som övergångsmodellen SST, lovande resultat när det gäller att fånga dynamiken vid virvelflöden, även om användningen ofta medför ökade krav på beräkningskapacitet. Strategier för kinetik och förbränningsmodellering varierar, där till exempel användningen av sannolikhetstäthets-funktioner är effektiv vid bestämning av en flammas position och dess temperaturområden. Detaljerad kinetisk reaktionsmodellering tillsammans med strömningsmekanik i realtid förbättrar förståelsen för förbränningsdynamik och hur olika komponenter uppträder. Sot modellering är utmanande när det gäller att noggrant förutsäga partikelstorleksfördelningar, vilket belyser en begränsning hos kommersiell programvara för modellering. En förenkling av den geometriska representationen till en dimension förenklar och förbättrar möjligheten att förena komplexa sot- och förbränningsmodeller, vilket leder till ett lägre behov av beräkningskapacitet och en förbättring av modelleringsresultaten.

Arbetet betonar behovet av utvecklade robusta moduler för modellering, validerade vid olika förbränningsförhållanden, och framtagna inom akademiska forskning med en stark koppling till industriella tillämpningar. Slutligen så ger arbetet insikter i hur komplex CFD-modellering av förbränningssystem är, och hur viktigt det är men en fortsatt förfining och validering av metoder för modellering för att överbrygga gapet mellan teoretiska studier och praktiska tillämpningar.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. , p. 78
Series
TRITA-CBH-FOU ; 2024:24
Keywords [en]
Autothermal tar reforming, Soot particle size distribution, Reactive flows, Combustion kinetics, Computational fluid dynamics, Modelling of soot formation, Burner design
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-346241ISBN: 978-91-8040-939-1 (print)OAI: oai:DiVA.org:kth-346241DiVA, id: diva2:1856747
Public defence
2024-06-13, D3, Lindstedtsvägen 9, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20240516

Available from: 2024-05-16 Created: 2024-05-08 Last updated: 2025-02-18Bibliographically approved
List of papers
1. Modeling, Design, and Verification of a Burner for Partial Oxidation of Biomass Product Gas in an Autothermal Reformer
Open this publication in new window or tab >>Modeling, Design, and Verification of a Burner for Partial Oxidation of Biomass Product Gas in an Autothermal Reformer
2016 (English)In: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 55, no 36, p. 9687-9697Article in journal (Refereed) Published
Abstract [en]

There is global interest in utilization of biomass energy through thermochemical processes such as gasification. The crucial step in many gasification processes is the upgrading of the produced gas, removing for example problematic components, such as tar, preferably with a flexible solution that adapts to several feedstock compositions, gasification technologies, and conditions. The present work focuses on the underpinning modeling for the development of a burner for partial combustion in an autothermal tar reformer. A design and modeling study considering the effect of the burner geometry and inlet locations on flame stability was performed. The model and the constructed burner is verified and validated against experimental results, displaying a successful operation of the combustion zone, verifying and validating the developed model against specific requirements. The verified model was finally applied for an extended process window.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2016
Keywords
Combustion, Gasification, Tar, Autothermal reformers, Combustion zones, Design and modeling, Gasification process, Gasification technologies, Partial combustion, Partial oxidations, Thermo chemical process
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-193997 (URN)10.1021/acs.iecr.6b01154 (DOI)000383409700015 ()2-s2.0-84987776153 (Scopus ID)
Note

QC 20161020

Available from: 2016-10-20 Created: 2016-10-14 Last updated: 2024-05-08Bibliographically approved
2. Modelling and optimization of a small diesel burner for mobile applications
Open this publication in new window or tab >>Modelling and optimization of a small diesel burner for mobile applications
2018 (English)In: Energies, E-ISSN 1996-1073, Vol. 11, no 11, article id 2904Article in journal (Refereed) Published
Abstract [en]

While extensive research has been done on improving diesel engines, much less has been done on auxiliary heaters, which have their own design challenges. The study analyzes how to optimize the combustion performance of an auxiliary heater, a 6 kW diesel burner, by investigating key parameters affecting diesel combustion and their properties. A model of a small diesel heater, including a simulation of fuel injection and combustion process, was developed step-wise and verified against experimental results that can be used for scaling up to 25 kW heaters. The model was successfully applied to the burner, predicting the burner performance in comparison with experimental results. Three main variables were identified as important for the design. First, it was concluded that the distance from the ring cone to the nozzle is essential for the fluid dynamics and flame location, and that the ring cone should be moved closer to the nozzle for optimal performance. Second, the design of the swirl co-flow is important, and the swirl number of the inlet air should be kept above 0.6 to stabilize the flame location for the present burner design. Finally, the importance of the nozzle diameter to avoid divergent particle vaporization was pointed out.

Place, publisher, year, edition, pages
MDPI AG, 2018
Keywords
CFD modelling, Design optimization, Diesel combustion, NOx emission, Nozzle diameter, Swirl number, Combustion, Computational fluid dynamics, Nozzle design, Nozzles, NOx emissions, Swirl numbers, Diesel engines
National Category
Medical Engineering
Identifiers
urn:nbn:se:kth:diva-247085 (URN)10.3390/en11112904 (DOI)000451814000042 ()2-s2.0-85057841817 (Scopus ID)
Note

QC 20190503

Available from: 2019-05-03 Created: 2019-05-03 Last updated: 2024-05-08Bibliographically approved
3. Experimental and Numerical Investigation of Flow Field and Soot Particle Size Distribution of Methane-Containing Gas Mixtures in a Swirling Burner
Open this publication in new window or tab >>Experimental and Numerical Investigation of Flow Field and Soot Particle Size Distribution of Methane-Containing Gas Mixtures in a Swirling Burner
2022 (English)In: ACS Omega, E-ISSN 2470-1343, Vol. 7, no 1, p. 469-479Article in journal (Refereed) Published
Abstract [en]

The formation of soot in a swirling flow is investigated experimentally and numerically in the context of biogas combustion using a CO2-diluted methane/oxygen flame. Visualization of the swirling flow field and characterization of the burner geometry is obtained through PIV measurements. The soot particle size distributions under different fuel concentrations and swirling conditions are measured, revealing an overall reduction of soot concentration and smaller particle sizes with increasing swirling intensities and leaner flames. An axisymmetric two-dimensional CFD model, including a detailed combustion reaction mechanism and soot formation submodel, was implemented using a commercial computational fluid dynamics (CFD) code (Ansys Fluent). The results are compared with the experiments, with similar trends observed for the soot size distribution under fuel-lean conditions. However, the model is not accurate enough to capture soot formation in fuel-rich combustion cases. In general, soot particle sizes from the model are much smaller than those observed in the experiments, with possible reasons being the inappropriate modeling in Fluent of governing mechanisms for soot agglomeration, growth, and oxidation for CH4-CO2 mixtures.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2022
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-310793 (URN)10.1021/acsomega.1c04895 (DOI)000772023400045 ()35036716 (PubMedID)2-s2.0-85122592764 (Scopus ID)
Note

QC 20220407

Available from: 2022-04-07 Created: 2022-04-07 Last updated: 2024-05-08Bibliographically approved
4. Insights into Soot Formation: A Kinetic Modelling Approach
Open this publication in new window or tab >>Insights into Soot Formation: A Kinetic Modelling Approach
(English)Manuscript (preprint) (Other academic)
Keywords
Combustion; Soot formation; CFD modelling; Detailed kinetics; Soot kinetics
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-346440 (URN)
Note

QC 20240517

Available from: 2024-05-14 Created: 2024-05-14 Last updated: 2024-05-17Bibliographically approved

Open Access in DiVA

Summary(4063 kB)186 downloads
File information
File name SUMMARY01.pdfFile size 4063 kBChecksum SHA-512
1308fbdf901fc395bcb1970ab6f96efa358dd524c6c8ebb7234e7e4be9132fc526ab9639656dc93a26f21dca8927716f1fd76c89fb00ead72b3cca3498bfae6a
Type summaryMimetype application/pdf

Authority records

Musavi, Zari

Search in DiVA

By author/editor
Musavi, Zari
By organisation
Process Technology
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 925 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf