kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Anomaly Detection for Monocular Camera-based Distance Estimation in Autonomous Driving
KTH, School of Electrical Engineering and Computer Science (EECS).
2024 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Avvikelsedetektion för monokulär kamerabaserad distanssuppskattning vid autonom körning (Swedish)
Abstract [en]

With the development of Autonomous Driving (AD) technology, there is a growing concern over the safety of the technology. Finding methods to improve the reliability of this technology becomes a current challenge. The AD system is composed of a perception module, a planning module, and a control module. The perception module, which provides information about the environment for the whole system, is a critical part of the AD system. This project aims to provide a better understanding of the functionality and reliability of the perception module of an AD system. In this project, a simple model of the perception module is built with YOLOv5-nano for object detection, StrongSORT for object tracking, and MonoDepth2 for depth estimation. The system takes images from a single camera as input and produces a time series of distance to the preceding vehicle. Fault injection technologies are utilized for testing the reliability of the system. Different faults, including weather factors, sensor faults, and encoder faults, are injected. The system behaviors under faults are observed and analyzed. Then multiple methods for anomaly detection are applied to the time series of distance data, including the statistic method ARIMA, and the machine learning methods MLP and LSTM. Comparisons are made among the anomaly detection methods, based on the efficiency and performance. The dataset in this project is generated by the CARLA simulator. 

Abstract [sv]

Med utvecklingen av tekniken för autonom körning (AD) växer oro över teknologins säkerhet. Att hitta metoder för att förbättra tillförlitligheten hos denna teknologi blir en aktuell utmaning. AD-systemet består av en perceptionsmodul, en planeringsmodul och en styrmodul. Perceptionsmo­dulen, som tillhandahåller information om miljön för hela systemet, är en kritisk del av AD-systemet. Detta projekt syftar till att ge en bättre förståelse för funktionaliteten och tillförlitligheten hos perceptionsmodulen i ett AD-system. I detta projekt byggs en enkel modell av perceptionsmodulen med YOLOv5-nano för objektdetektion, StrongSORT för objektföljning och MonoDepth2 för djupuppskattning. Systemet tar bilder från en enda kamera som inmatning och producerar en tidsserie av avståndet till det föregående fordonet. Felinjektionstekniker används för att testa systemets tillförlitlighet. Olika fel, inklusive väderfaktorer, sensorfel och maskininlärningsfel, injiceras. Systemets beteende under fel observeras och analyseras. Därefter tillämpas flera metoder för avvikelsedetektering på tidsserien av avstånd, inklusive statistikmetoden ARIMA samt maskininlärningsmetoderna MLP och LSTM. Jämförelser görs mellan avvikelsedetekteringsmetoderna, baserat på effektivitet och prestanda. Datamängden i detta projekt genereras av CARLA­simulatorn.

Place, publisher, year, edition, pages
2024. , p. 68
Series
TRITA-EECS-EX ; 2024:51
Keywords [en]
Autonomous Driving, Fault Injection, Anomaly Detection, Distance Estima­tion
Keywords [sv]
Autonom Korning, Felinjektion, Avvikelsedetektion, Distansuppskattning
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-346297OAI: oai:DiVA.org:kth-346297DiVA, id: diva2:1857193
Supervisors
Examiners
Available from: 2024-05-20 Created: 2024-05-13 Last updated: 2024-05-20Bibliographically approved

Open Access in DiVA

fulltext(14278 kB)452 downloads
File information
File name FULLTEXT01.pdfFile size 14278 kBChecksum SHA-512
1f94e732fbb652df68f3b7f1084598322466234b995486683770c79be51813ad6f6fd4ec0d02d1da4127d00f51f218e5004e9572004053f42bc3e30a10bd34de
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 452 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 403 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf