kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Drone-based photogrammetric inspection of interior box girder bridges
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges. Division of Structural Engineering and Bridges, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.ORCID iD: 0009-0003-2220-2770
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges. KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Technology and Design.ORCID iD: 0000-0002-2833-4585
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.ORCID iD: 0000-0002-5447-2068
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Digital inspections methods have gained increasing interest in the civil engineering field for assessing the condition of various structures including buildings and bridges. These methods are used primarily to evaluate the external surface condition of the structure. However, in the case of bridges, their application when inspecting the interior of these structures remains uncommon. This paper presents a case study for inspecting the interior of a concrete box girder bridge, the Strängnäs bridge. The inspection involved gathering data using a commercial drone, creating a photogrammetrical model, detecting and quantifying damages by employing a Convolutional Neural Network (CNN). The analysis successfully detected 60 cm long concrete cracks, a total area of 3.5 m2 leakage and corrosion over 40 cm. The study addressed the difficulties such as insufficient lighting, lack of GPS signal and dust clouds reducing visibility. Despite these obstacles, the study demonstrated the effectiveness of indoor drone-based inspections.

National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering, Structural Engineering and Bridges
Identifiers
URN: urn:nbn:se:kth:diva-346437OAI: oai:DiVA.org:kth-346437DiVA, id: diva2:1857813
Note

QC 20240520

Available from: 2024-05-14 Created: 2024-05-14 Last updated: 2024-05-20Bibliographically approved
In thesis
1. Detection and quantification of cracks in concrete bridges using drone-image inspection
Open this publication in new window or tab >>Detection and quantification of cracks in concrete bridges using drone-image inspection
2024 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The assessment of civil infrastructure plays an important role in ensuring the safety of the general public and the durability of structures. Traditional inspection methods often involve manual labour and subjective evaluations, resulting in limitations in efficiency and accuracy. In recent years, there has been an increasing interest on using advanced technologies, such as unmanned aerial vehicles (UAVs), image analysis and machine learning techniques, to establish them as alternatives for the inspection process. These techniques provide different advantages compared with the manual method in terms of time, objectivity, and safety. The results of these techniques can allow the engineers in charge of the assessment and maintenance planning to obtain detailed results that can improve their efficiency but they are not without challenges. This research project aims to evaluate different methods used for damage detection and quantification and their integration with UAVs as an alternative to structural inspections. The proposed methodology combines image analysis techniques, Convolutional Neural Networks (CNNs) with drones to address the different aspects of inspections, from the data gathering to the damage detection and quantification. This methodology focuses on detecting and quantifying small cracks as narrow as 0.1 mm on concrete structures, aiming to achieve results comparable to those of traditional inspection. Furthermore, an application demonstrating the feasibility of the methodology in inside environments is also presented, focusing on the inspection of the internal section of a box girder bridge, including the creation of 3Dphotogrammetrical models to improve the inspection process. The results of the thesis highlight the methodology’s capabilities in detecting small cracks with a high probability and the possibility to use it for inside inspections without ideal conditions. This demonstrates the potential of integrating the different methods to transform structural inspections toward more efficient methodologies. Furthermore, the analysis of the results evaluates the drawbacks encountered and outlines future research directions aimed at advancing image-based inspections and their practical application.

Abstract [sv]

Bedömningen av civil infrastruktur spelar en viktig roll för att säkerställa allmänhetens säkerhetoch strukturernas hållbarhet. Traditionella inspektionsmetoder innebär ofta manuellt arbete ochsubjektiva bedömningar, vilket leder till begränsningar i effektivitet och noggrannhet. Undersenare år har intresset ökat för att använda avancerad teknik, såsom obemannade flygfarkoster(UAV), bildanalys och maskininlärningstekniker, för att etablera dem som alternativ förinspektionsprocessen. Dessa tekniker ger olika fördelar jämfört med den manuella metoden närdet gäller tid, objektivitet och säkerhet. Resultaten från dessa tekniker kan ge ingenjörer somansvarar för bedömning och underhållsplanering detaljerade resultat som kan förbättra deraseffektivitet, men de är inte utan utmaningar.

Detta forskningsprojekt syftar till att utvärdera olika metoder som används för att upptäcka ochkvantifiera skador och deras integration med UAV som ett alternativ till manuella inspektioner.Den föreslagna metoden kombinerar bildanalystekniker, Convolutional Neural Networks(CNN) med drönare för att hantera de olika aspekterna av inspektioner, från datainsamling tillskadedetektering och kvantifiering. Metoden fokuserar på att upptäcka och kvantifierasmåsprickor som är så små som 0.1 mm på betongkonstruktioner och syftar till att uppnå resultatsom är jämförbara med dem vid traditionell inspektion. Dessutom presenteras en tillämpningsom visar att metoden är genomförbar i inomhusmiljöer, med fokus på inspektion av den inresektionen av en lådbalkbro, inklusive skapandet av 3D-fotogrammetriska modeller för attförbättra inspektionsprocessen.

Resultaten i uppsatsen belyser metodikens förmåga att upptäcka mikrosprickor med högsannolikhet och möjligheten att använda tekniken som en del av inomhusinspektioner utanidealiska förhållanden. Detta visar potentialen i att integrera de olika metoderna för att bidratill att omvandla manuella inspektioner mot mer effektiva metoder. Dessutom utvärderaranalysen av resultaten de nackdelar som uppstått och skisserar framtida forskningsriktningarsom syftar till att främja bildbaserade inspektioner och deras praktiska tillämpning.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 40
Series
TRITA-ABE-DLT ; 2417
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering, Structural Engineering and Bridges
Identifiers
urn:nbn:se:kth:diva-346571 (URN)978-91-8040-965-0 (ISBN)
Presentation
2024-06-14, M108, Brinellvägen 23, KTH Campus, public video conference link https://kth-se.zoom.us/j/62274505390, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20240521

Available from: 2024-05-21 Created: 2024-05-20 Last updated: 2024-06-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Avendãno, Juan CamiloLeander, JohnKaroumi, Raid

Search in DiVA

By author/editor
Avendãno, Juan CamiloLeander, JohnKaroumi, Raid
By organisation
Structural Engineering and BridgesBuilding Technology and DesignThe KTH Railway Group
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 186 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf