kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bathymetric Surveying Through Neural Inverse Sonar Modeling
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0001-8387-9951
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Autonomous underwater vehicles (AUVs) equipped with sidescan sonars (SSS) and remotely operated vehicles (ROVs) equipped with forward looking sonars (FLS)  have become vital tools for many underwater applications, among which, bathymetric mapping is one of the most important yet challenging tasks. Providing high-resolution imagery, SSS and FLS are particularly suitable for compact, low-cost and scalable vehicles, however their linear array design makes their measurements ambiguous in elevation. This limitation, makes inverse sonar modeling necessary for accurate and detailed bathymetric surveying in open sea missions. Solving such an inverse problem is usually ill-posed, even with repeated observations from different distances and viewpoints. Thus, this thesis has focused on learning-based approaches to sonar modeling, aiming to leverage advances in recent deep learning.

We present our contributions in three areas tackling this inverse sonar modeling. First, our work on learning SSS model with data-driven approaches shows how convolutional neural networks (CNNs) can be successfully applied to learn the inverse model in an end-to-end, supervised-learning fashion. We further show how to fuse different CNN estimates depending on the representations used for the seabed. We demonstrate that with an explicit grid representation, the uncertainty estimates of CNN's predictions can be of help in the fusion, while an implicit neural representation, specifically, a neural heightmap parameterized by multi-layer perceptrons (MLPs) could handle the fusion implicitly by posing the problem as a global optimization.Secondly, we leverage the methodology of representing the seabed with implicit neural representations and propose to use a Lambertian model based on surface rendering for sonar modeling. The proposed approach does not require collecting ground truth bathymetry and can be used on different datasets with different sensor setups. The experiments also demonstrate how the approach can converge  to a self-consistent map without any external bathymetric data.Finally, we adapt two differentiable volume rendering techniques  in  computer graphics to sonar modeling and show their advantages over surface rendering  on accurately modeling the physics behind the sonar ensonification process. In specific, a soft rasterization-based renderer with explicit mesh representations, and a ray-casting-based volumetric rendering with implicit neural representations with parametric encodings. The latter solution, in particular, is capable of leveraging deep learning advances without Lambertian approximation.  Our results show the proposed approach not only outperforms surface rendering solutions but its parametric encoding also allows it to outperform volume rendering methods with non-parametric encodings. We also demonstrate the potential application of increasing the resolution of  a low-resolution prior map with FLS data from low-altitude surveys.

Abstract [sv]

Autonomous underwater vehicles (AUVs) utrustade med sidescan sonars (SSS) och remotely operated behicles (ROVs) utrustade med forward looking sonars (FLS) har blivit avgörande verktyg för många undervattensapplikationer. Ett av dessa applikationer är batymetrisk kartläggning som är en av de viktigaste men samtidigt mest utmanande undervattensapplikationen. Genom att tillhandahålla högupplöst bildmateriel är SSS och FLS särskilt lämpliga verkty för kompakta, kostnadseffektiva och skalbara fordon. En begräsning i FLS samt SSS fasstyrda grupp ekolod design är att deras mätningar blir tvetydiga i höjdled.Denna begränsning gör invers sonarmodellering nödvändig för noggrann och detaljerad batymetrisk kartläggning i uppdrag på öppet hav.Att lösa ett sådant invers problem är vanligtvis en svår uppgift, även med upprepade observationer från olika avstånd och synvinklar. Därför har denna avhandling fokuserat på inlärnings baserade tillvägagångssätt för sonarmodellering i syfte att dra nytta av framsteg inom nyligen utvecklad djupinlärningsteknik.

Vi presenterar våra bidrag inom tre områden som hanterar invers sonarmodellering.Först visar vårt arbete med en inlärningsbaserad SSS-modell och datadrivna metoder hur convolutional neural networks (CNNs) framgångsrikt kan användas för att lära sig den inversa modellen på ett Väglett sätt.Vidare visar vi hur olika CNN-estimat kan kombineras beroende på vilken representation av havsbotten som används. Vi demonstrerar att med en explicit gitterrepresentation kan osäkerhetsestimat från CNN-förutsägelser vara till hjälp vid sammanslagningen. Med en implicit neural representation, specifikt en neural höjdkarta parametriserad av flerlagers perceptroner (MLPs), kan sammanslagningen hanteras implicit genom att formulera problemet som en global optimeringsfråga.För det andra utnyttjar vi metoden att representera havsbotten med implicita neurala representationer och föreslår användningen av en lambertiell modell baserad på ytritning för sonarmodellering. Detta tillvägagångssätt kräver inte insamling av verklig batymetri och kan användas på olika dataset med olika sensorsystem. Experimenten visar också att metoden kan konvergera till en självkonsistent karta utan några externa batymetriska data.Slutligen anpassar vi två olika typer av differentierbara volymrenderingstekniker inom datorgrafik till sonarmodellering och visar deras fördelar över ytritning för att noggrant modellera fysiken bakom sonarens insonifieringsprocess. Specifikt använder vi en mjuk rasteriseringsbaserad renderare med explicita nätrepresentationer och en strålspårningsbaserad volymrendering med implicita neurala representationer och parametriska kodningar. Den senare lösningen kan särskilt dra nytta av framsteg inom djupinlärning utan lambertiell approximation.Våra resultat visar att det föreslagna tillvägagångssättet inte bara överträffar lösningar baserade på ytritning, utan dess parametriska kodning gör det även möjligt att överträffa volymrenderingsmetoder med icke-parametriska kodningar. Vi demonstrerar också den potentiella tillämpningen av att öka upplösningen på en karta med låg upplösning med FLS-data från undersökningar på låg höjd.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. , p. xv, 50
Series
TRITA-EECS-AVL ; 2024:38
National Category
Robotics and automation
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-346474ISBN: 978-91-8040-912-4 (print)OAI: oai:DiVA.org:kth-346474DiVA, id: diva2:1858182
Public defence
2024-06-05, https://kth-se.zoom.us/j/62947919928, E3, Osquars backe 2, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Note

QC 20240516

Available from: 2024-05-16 Created: 2024-05-15 Last updated: 2025-02-09Bibliographically approved
List of papers
1. Bathymetric Reconstruction From Sidescan Sonar With Deep Neural Networks
Open this publication in new window or tab >>Bathymetric Reconstruction From Sidescan Sonar With Deep Neural Networks
2023 (English)In: IEEE Journal of Oceanic Engineering, ISSN 0364-9059, E-ISSN 1558-1691, Vol. 48, no 2, p. 372-383Article in journal (Refereed) Published
Abstract [en]

In this article, we propose a novel data-driven approach for high-resolution bathymetric reconstruction from sidescan. Sidescan sonar intensities as a function of range do contain some information about the slope of the seabed. However, that information must be inferred. In addition, the navigation system provides the estimated trajectory, and normally, the altitude along this trajectory is also available. From these, we obtain a very coarse seabed bathymetry as an input. This is then combined with the indirect but high-resolution seabed slope information from the sidescan to estimate the full bathymetry. This sparse depth could be acquired by single-beam echo sounder, Doppler velocity log, and other bottom tracking sensors or bottom tracking algorithm from sidescan itself. In our work, a fully convolutional network is used to estimate the depth contour and its aleatoric uncertainty from the sidescan images and sparse depth in an end-to-end fashion. The estimated depth is then used together with the range to calculate the point's three-dimensional location on the seafloor. A high-quality bathymetric map can be reconstructed after fusing the depth predictions and the corresponding confidence measures from the neural networks. We show the improvement of the bathymetric map gained by using sparse depths with sidescan over estimates with sidescan alone. We also show the benefit of confidence weighting when fusing multiple bathymetric estimates into a single map.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
Bathymetric mapping, data-driven, neural network, sidescan sonar (SSS)
National Category
Robotics and automation
Identifiers
urn:nbn:se:kth:diva-330071 (URN)10.1109/JOE.2022.3220330 (DOI)000906218600001 ()2-s2.0-85146230440 (Scopus ID)
Note

QC 20230626

Available from: 2023-06-26 Created: 2023-06-26 Last updated: 2025-02-09Bibliographically approved
2. Neural Network Normal Estimation and Bathymetry Reconstruction From Sidescan Sonar
Open this publication in new window or tab >>Neural Network Normal Estimation and Bathymetry Reconstruction From Sidescan Sonar
2023 (English)In: IEEE Journal of Oceanic Engineering, ISSN 0364-9059, E-ISSN 1558-1691, Vol. 48, no 1, p. 218-232Article in journal (Refereed) Published
Abstract [en]

Sidescan sonar intensity encodes information about changes in the surface normal of the seabed. However, other factors such as seabed geometry as well as its material composition also affect the return intensity. One can model these intensity changes in a forward direction from the surface normals from a bathymetric map and physical properties to the measured intensity, or alternatively one can use an inverse model which starts from the intensities and models the surface normals. Here, we use an inverse model which leverages deep learning's ability to learn from data; a convolutional neural network is used to estimate the surface normal from the sidescan. Once this information is estimated, a bathymetric map can be reconstructed through an optimization framework that also includes altimeter readings to provide a sparse depth profile as a constraint. Implicit neural representation learning was recently proposed to represent the bathymetric map in such an optimization framework. In this article, we use a neural network to represent the map and optimize it under constraints of altimeter points and estimated surface normal from sidescan. By fusing multiple observations from different angles from several sidescan lines, the estimated results are improved through optimization. We demonstrate the efficiency and scalability of the approach by reconstructing a high-quality bathymetry using sidescan data from a large sidescan survey. We compare the proposed data-driven inverse model approach of modeling a sidescan with a forward Lambertian model. We assess the quality of each reconstruction by comparing it with data constructed from a multibeam sensor.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
Bathymetry reconstruction, implicit neural representations, neural networks, sidescan sonar, Bathymetry, Convolution, Deep learning, Hydrographic surveys, Image reconstruction, Inverse problems, Maps, Sonar, Convolutional neural network, Images reconstruction, Implicit neural representation, Neural representations, Neural-networks, Optimisations, Side scan sonar, Surface normals
National Category
Computer graphics and computer vision
Identifiers
urn:nbn:se:kth:diva-327034 (URN)10.1109/JOE.2022.3194899 (DOI)000846420500001 ()2-s2.0-85137549738 (Scopus ID)
Note

QC 20230523

Available from: 2023-05-23 Created: 2023-05-23 Last updated: 2025-02-07Bibliographically approved
3. Sidescan Only Neural Bathymetry from Large-Scale Survey
Open this publication in new window or tab >>Sidescan Only Neural Bathymetry from Large-Scale Survey
2022 (English)In: Sensors, E-ISSN 1424-8220, Vol. 22, no 14, p. 5092-, article id 5092Article in journal (Refereed) Published
Abstract [en]

Sidescan sonar is a small and low-cost sensor that can be mounted on most unmanned underwater vehicles (UUVs) and unmanned surface vehicles (USVs). It has the advantages of high resolution and wide coverage, which could be valuable in providing an efficient and cost-effective solution for obtaining the bathymetry when bathymetric data are unavailable. This work proposes a method of reconstructing bathymetry using only sidescan data from large-scale surveys by formulating the problem as a global optimization, where a Sinusoidal Representation Network (SIREN) is used to represent the bathymetry and the albedo and the beam profile are jointly estimated based on a Lambertian scattering model. The assessment of the proposed method is conducted by comparing the reconstructed bathymetry with the bathymetric data collected with a high-resolution multi-beam echo sounder (MBES). An error of 20 cm on the bathymetry is achieved from a large-scale survey. The proposed method proved to be an effective way to reconstruct bathymetry from sidescan sonar data when high-accuracy positioning is available. This could be of great use for applications such as surface vehicles with Global Navigation Satellite System (GNSS) to obtain high-quality bathymetry in shallow water or small autonomous underwater vehicles (AUVs) if simultaneous localization and mapping (SLAM) can be applied to correct the navigation estimate.

Place, publisher, year, edition, pages
MDPI AG, 2022
Keywords
bathymetric maps, neural nets, representation learning, sidescan sonars
National Category
Robotics and automation
Identifiers
urn:nbn:se:kth:diva-316234 (URN)10.3390/s22145092 (DOI)000832338200001 ()35890772 (PubMedID)2-s2.0-85133476385 (Scopus ID)
Note

QC 20220818

Available from: 2022-08-18 Created: 2022-08-18 Last updated: 2025-02-09Bibliographically approved
4. Towards Differentiable Rendering for Sidescan Sonar Imagery
Open this publication in new window or tab >>Towards Differentiable Rendering for Sidescan Sonar Imagery
2022 (English)In: 2022 IEEE/OES AUTONOMOUS UNDERWATER VEHICLES SYMPOSIUM (AUV), Institute of Electrical and Electronics Engineers (IEEE) , 2022Conference paper, Published paper (Refereed)
Abstract [en]

Recent advances in differentiable rendering, which allow calculating the gradients of 2D pixel values with respect to 3D object models, can be applied to estimation of the model parameters by gradient-based optimization with only 2D supervision. It is easy to incorporate deep neural networks into such an optimization pipeline, allowing the leveraging of deep learning techniques. This also largely reduces the requirement for collecting and annotating 3D data, which is very difficult for applications, for example when constructing geometry from 2D sensors. In this work, we propose a differentiable renderer for sidescan sonar imagery. We further demonstrate its ability to solve the inverse problem of directly reconstructing a 3D seafloor mesh from only 2D sidescan sonar data.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022
Series
IEEE OES Autonomous Underwater Vehicles, ISSN 1522-3167
Keywords
bathymetric mapping, differentiable rendering, sidescan sonar
National Category
Robotics and automation
Identifiers
urn:nbn:se:kth:diva-323572 (URN)10.1109/AUV53081.2022.9965917 (DOI)000896331200026 ()2-s2.0-85143980354 (Scopus ID)
Conference
IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), SEP 19-21, 2022, Singapore, SINGAPORE
Note

Part of proceedings: ISBN 978-1-6654-1689-4, QC 20230207

Available from: 2023-02-07 Created: 2023-02-07 Last updated: 2025-02-09Bibliographically approved
5. Bathymetric Surveying with Imaging Sonar Using Neural Volume Rendering
Open this publication in new window or tab >>Bathymetric Surveying with Imaging Sonar Using Neural Volume Rendering
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This research addresses the challenge of estimating bathymetry from imaging sonars where the state-of-the-art works have primarily relied on either supervised learning with ground-truth labels or surface rendering based on the Lambertian assumption.In this letter, we propose a novel, self-supervised framework based on volume rendering for reconstructing bathymetry using forward-looking sonar (FLS) data collected during standard surveys. We represent the seafloor as a neural heightmap encapsulated with a parametric multi-resolution hash encoding scheme and model the sonar measurements with a differentiable renderer using sonar volumetric rendering employed with hierarchical sampling techniques. Additionally, we model the horizontal and vertical beam patterns and estimate them jointly with the bathymetry. We evaluate the proposed method quantitatively on simulation and field data collected by remotely operated vehicles (ROVs) during low-altitude surveys. Results show that the proposed method outperforms the current state-of-the-art approaches that use imaging sonars for seabed mapping. We also demonstrate that the proposed approach can potentially be used to increase the resolution of a low-resolution prior map with FLS data from low-altitude surveys.

National Category
Robotics and automation
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-346441 (URN)
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)Swedish Foundation for Strategic Research, IRC15-0046
Note

QC 20240520

Available from: 2024-05-14 Created: 2024-05-14 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

fulltext(9305 kB)551 downloads
File information
File name FULLTEXT01.pdfFile size 9305 kBChecksum SHA-512
8587490fc14b24e4ed83c249a0fc76a2c2f435900f44c2b525dc2d66de9578c2184d159817dc43d2d0e4eb52fe3a8e914f9731ea7e1e2591f62667a0228e750f
Type fulltextMimetype application/pdf

Authority records

Xie, Yiping

Search in DiVA

By author/editor
Xie, Yiping
By organisation
Robotics, Perception and Learning, RPL
Robotics and automation

Search outside of DiVA

GoogleGoogle Scholar
Total: 551 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1715 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf