kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Kinetic inductive electromechanical transduction for atomic force microscopy
KTH, School of Engineering Sciences (SCI), Applied Physics. (Quantum and Nanostructure Physics)ORCID iD: 0000-0003-2552-6415
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The Atomic Force Microscope (AFM) is considered one of the most powerful tools in surface science thanks to its ability to sense forces at the nanoscale and image surfaces with high lateral resolution. The AFM employs a microcantilever with a sharp tip as a force transducer operated in close proximity to a surface. Nanoscale force sensing in AFM is achieved by measuring the motion of the cantilever under the influence of the localized tip-surface interaction. Cavity optomechanics provides a framework to measure cantilever motion at the fundamental limit of sensitivity. This thesis applies the principles of cavity optomechanics to realize an integrated force sensor fulfilling the requirements of low-temperature AFM applications, with the goal of enhancing the sensitivity and speed of imaging. The optical cavity is replaced by a superconducting microwave resonant circuit and the optomechanical detection principle is based on a novel type electromechanical coupling developed by our group. Compressive or tensile surface strain produced by the bending of the microcantilever, causes a change in the kinetic inductance of a superconducting meandering nanowire, thereby changing the resonant frequency of a high-Q microwave mode.We discuss the design and fabrication of these AFM force sensors, including the deposition of sharp, conducting tips. The compact, integrated microwave resonant circuit is realized in a fully coplanar layout from a single superconducting NbTiN thin film deposited on a SiN layer on a Si substrate. The microcantilever beam is formed from the SiN layer which is released from the Si substrate.

We present experimental data characterizing the properties of the microwave resonator, the cantilever's flexural eigenmode, and the interaction between the two through the kinetic-inductive electromechanical coupling. We use different techniques to detect motion in a manner suitable for the typical modes of operation in traditional AFM, as well as additional methods specific to the electromechanical detection. We also integrated the force sensors into a prototype low temperature AFM scanning system built inside a dilution refrigerator. With this prototype we demonstrate the detection of tip-surface force gradients, and we show our initial attempts at imaging with electromechanical detection of motion.

Abstract [sv]

Atomkraftsmikroskopet (AFM) anses vara ett av de mest kraftfulla verktygen inom ytvetenskap tack vare dess förmåga att detektera krafter i nanoskala och avbilda ytor med hög lateral upplösning. AFM använder en mikro-vipparm med en skarp spets som en kraftgivare som drivs i närheten av en yta. Kraftavkänning vid nanoskala i AFM uppnås genom att mäta rörelsen hos vipparmen under påverkan av den lokaliserade spets-yta-interaktionen.Kavitetsoptomekanik tillhandahåller ett ramverk för att detektera vipparmens rörelse vid den grundläggande känslighetens gräns.

Denna avhandling tillämpar principerna för kavitetsoptomekanik för att implementera en integrerad kraftsensor som uppfyller kraven för AFM-applikationer vid låga temperaturer, med målet att förbättra känsligheten och hastigheten för avbildning för AFM.Den optiska kaviteten ersätts av en supraledande mikrovågsresonanskrets och den optomekaniska detekteringsprincipen är baserad på en ny typ av elektromekanisk koppling utvecklad av vår grupp. Kompressions- eller dragpåkänning som produceras av böjningen av en oscillerande mikro-vipparmen orsakar en förändring i den kinetiska induktansen hos en slingrande supraledande nanotråd, och ändrar därigenom resonansfrekvensen för ett hög-Q mikrovågsmod.Vi diskuterar design- och tillverkningsprocesserna för att utveckla dessa sensorer, inklusive avsättning av vassa, ledande spetsar. Mikrovågsresonanskretsen är förverkligad i en helt koplanär arrangemang från ett tunn-film lager av supraledande NbTiN avsatt på ett SiN-skikt på ett Si-substrat. SiN-skiktet frigörs sedan från substratet för att bilda mikro-vipparmen.

Vi presenterar experimentell data som karakteriserar egenskaperna hos mikrovågsresonatorn, vipparmens böjningsegenmod och interaktionen mellan de två genom den kinetisk-induktiva elektromekaniska kopplingen.Vi presenterar olika mättekniker för att implementera rörelsedetektering för de typiska driftsätten i traditionell AFM, samt ytterligare metoder specifika för elektromekanisk detektering.Slutligen presenterar vi utvecklingen av en prototyp för AFM-skanningssystem för låga temperaturer, byggt inuti ett utspädningskylskåp. Med denna prototyp demonstrerar vi detektering av spets-ytkraftgradienter och initiala försök till avbildning med elektromekanisk detektering av rörelse.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. , p. 84
Series
TRITA-SCI-FOU ; 2024:32
Keywords [en]
optomechanics, electromechanics, atomic force microscopy, quantum-limited sensing, force sensing, superconductivity, kinetic inductance
Keywords [sv]
optomekanik, elektromekanik, atomkraftsmikroskopi, kvantbegränsad avkänning, kraftavkänning, supraledning, kinetisk induktans
National Category
Physical Sciences
Research subject
Physics, Material and Nano Physics
Identifiers
URN: urn:nbn:se:kth:diva-346576ISBN: 978-91-8040-964-3 (print)OAI: oai:DiVA.org:kth-346576DiVA, id: diva2:1859075
Public defence
2024-06-14, FA32, Albanova, Roslagstullsbacken 21, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
EU, Horizon 2020, 828966Swedish Foundation for Strategic Research, ITM17-0343
Note

QC 2024-05-21

Available from: 2024-05-21 Created: 2024-05-20 Last updated: 2024-06-10Bibliographically approved
List of papers
1. Intrinsic Kerr amplification for microwave electromechanics
Open this publication in new window or tab >>Intrinsic Kerr amplification for microwave electromechanics
Show others...
2024 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 124, article id 243503Article in journal (Refereed) Published
Abstract [en]

Electromechanical transduction gain of 21 dB is realized in a micro-cantilever resonant force sensor operated in the unresolved-sideband regime. Strain-dependent kinetic inductance weakly couples cantilever motion to a superconducting nonlinear resonant circuit. A single pump generates motional sidebands and parametrically amplifies them via four-wave mixing. We study the gain and added noise, and we analyze potential benefits of this integrated amplification process in the context force sensitivity.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2024
Keywords
kerr nonlinearity, microwave resonators, superconductivity, kinetic inductance, four-wave mixing, parametric amplification
National Category
Nano Technology
Research subject
Physics, Material and Nano Physics
Identifiers
urn:nbn:se:kth:diva-343027 (URN)10.1063/5.0201936 (DOI)001248285000007 ()2-s2.0-85196043756 (Scopus ID)
Funder
EU, Horizon 2020, 828966Swedish Foundation for Strategic Research, ITM17-0343
Note

QC 20240702

Available from: 2024-02-05 Created: 2024-02-05 Last updated: 2024-11-18Bibliographically approved
2. Temperature dependence of microwave losses in lumped-element resonators made from superconducting nanowires with high kinetic inductance
Open this publication in new window or tab >>Temperature dependence of microwave losses in lumped-element resonators made from superconducting nanowires with high kinetic inductance
Show others...
2024 (English)In: Superconductor Science and Technology, ISSN 1361-6668, Vol. 37, no 7, article id 075013Article in journal (Refereed) Published
Abstract [en]

We study the response of several microwave resonators made from superconducting NbTiN thin-film meandering nanowires with large kinetic inductance, having different circuit topology and coupling to the transmission line. Reflection measurements reveal the parameters of the circuit and analysis of their temperature dependence in the range 1.7-6 K extract the superconducting energy gap and critical temperature. The lumped-element LC resonator, valid in our frequency range of interest, allows us to predict the quasiparticle contribution to internal loss, independent of circuit topology and characteristic impedance. Our analysis shows that the internal quality factor is limited not by thermal-equilibrium quasiparticles, but an additional temperature-dependent source of internal microwave loss. 

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2024
Keywords
kinetic inductance, superconductivity, microwave resonators, mattis-bardeen
National Category
Nano Technology
Research subject
Physics, Material and Nano Physics
Identifiers
urn:nbn:se:kth:diva-343024 (URN)10.1088/1361-6668/ad4d5c (DOI)001248945600001 ()2-s2.0-85196036472 (Scopus ID)
Funder
EU, Horizon 2020, 828966Swedish Foundation for Strategic Research, ITM17-0343
Note

QC 20240702

Available from: 2024-02-05 Created: 2024-02-05 Last updated: 2024-11-18Bibliographically approved
3. Kinetic Inductive Electromechanical Transduction for Nanoscale Force Sensing
Open this publication in new window or tab >>Kinetic Inductive Electromechanical Transduction for Nanoscale Force Sensing
Show others...
2023 (English)In: Physical Review Applied, E-ISSN 2331-7019, Vol. 20, no 2, article id 024022Article in journal (Refereed) Published
Abstract [en]

We use the principles of cavity optomechanics to design a resonant mechanical force sensor for atomic force microscopy. The sensor is based on a type of electromechanical coupling, dual to traditional capacitive coupling, whereby the motion of a cantilever induces surface strain that causes a change in the kinetic inductance of a superconducting nanowire. The cavity is realized by a compact microwave-plasma mode with an equivalent LC circuit involving the kinetic inductance of the nanowire. The device is fully coplanar and we show how to transform the cavity impedance for optimal coupling to the transmission line and the following amplifier. For the device presented here, we estimate the bare kinetic inductive mechanoelectric coupling (KIMEC) rate g0/2π in the range 3–10 Hz. We demonstrate phase-sensitive detection of cantilever motion using a multifrequency pumping and measurement scheme.

Place, publisher, year, edition, pages
American Physical Society, 2023
National Category
Nano Technology
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-334375 (URN)10.1103/physrevapplied.20.024022 (DOI)001052945100003 ()2-s2.0-85168731329 (Scopus ID)
Funder
Swedish Foundation for Strategic Research, ITM17-0343EU, Horizon 2020, 828966
Note

QC 20230825

Available from: 2023-08-18 Created: 2023-08-18 Last updated: 2024-11-18Bibliographically approved
4. Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications
Open this publication in new window or tab >>Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications
Show others...
2024 (English)In: Beilstein Journal of Nanotechnology, E-ISSN 2190-4286, Vol. 15, p. 242-255Article in journal (Refereed) Published
Abstract [en]

We describe a transducer for low-temperature atomic force microscopy based on electromechanical coupling due to a strain-dependent kinetic inductance of a superconducting nanowire. The force sensor is a bending triangular plate (cantilever) whose deflection is measured via a shift in the resonant frequency of a high-Q superconducting microwave resonator at 4.5 GHz. We present design simulations including mechanical finite-element modeling of surface strain and electromagnetic simulations of meandering nanowires with large kinetic inductance. We discuss a lumped-element model of the force sensor and describe the role of an additional shunt inductance for tuning the coupling to the transmission line used to measure the microwave resonance. A detailed description of our fabrication is presented, including information about the process parameters used for each layer. We also discuss the fabrication of sharp tips on the cantilever using focused electron beam-induced deposition of platinum. Finally, we present measurements that characterize the spread of mechanical resonant frequency, the temperature dependence of the microwave resonance, and the sensor’s operation as an electromechanical transducer of force.

Place, publisher, year, edition, pages
Frankfurt am Main, Germany: Beilstein Institut, 2024
Keywords
atomic force microscopy, force sensing, kinetic inductance, optomechanics, superconductivity
National Category
Nano Technology
Identifiers
urn:nbn:se:kth:diva-343570 (URN)10.3762/bjnano.15.23 (DOI)001162781300001 ()2-s2.0-85191661029 (Scopus ID)
Note

QC 20240301

Available from: 2024-02-20 Created: 2024-02-20 Last updated: 2024-11-18Bibliographically approved
5. Sensing force gradients with cavity optomechanics while evading backaction
Open this publication in new window or tab >>Sensing force gradients with cavity optomechanics while evading backaction
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We study force gradient sensing by a coherently driven mechanical resonator with phase-sensitive detection of motion via the two-tone backaction evading measurement of cavity optomechanics. The response of the cavity to two coherent pumps is solved by numerical integration of the classical equations of motion, showing an extended region of monotonic response. We use Floquet theory to model the fluctuations, which rise only slightly above that of the usual backaction evading measurement in the presence of the mechanical drive. Our analysis indicates that this sensing technique is advantageous for applications such as Atomic Force Microscopy.

Keywords
Optomechanics, force sensing
National Category
Physical Sciences
Research subject
Physics, Material and Nano Physics
Identifiers
urn:nbn:se:kth:diva-346489 (URN)10.48550/arXiv.2405.06589 (DOI)
Funder
EU, Horizon 2020, 828966Swedish Foundation for Strategic Research, ITM17-0343
Note

QC 20240521

Available from: 2024-05-16 Created: 2024-05-16 Last updated: 2024-05-27Bibliographically approved

Open Access in DiVA

kappa(13957 kB)146 downloads
File information
File name FULLTEXT01.pdfFile size 13957 kBChecksum SHA-512
f30095872f620aaad78b3e12f2e8640e54d5b220dd006c6438b9f2f7a52060aee15a252171703a4c5da269c0b3da33205abf84a07649ee3b40d51dfbdeede9b8
Type summaryMimetype application/pdf

Authority records

Scarano, Ermes

Search in DiVA

By author/editor
Scarano, Ermes
By organisation
Applied Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1575 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf