kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Remaining Range Estimation for an Electrical Motorcycle with an RLS Mass Estimation Algorithm
KTH, School of Industrial Engineering and Management (ITM), Engineering Design, Mechatronics and Embedded Control Systems.
2024 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Estimering av Resterande Räckvidd för en Elektrisk Motorcykel med en RLS Massestimeringsalgoritm (Swedish)
Abstract [en]

This study investigated the implementation of a remaining range estimation algorithm for electrical vehicles, an essential feature to define a vehicle's reliability on the road. The implementation was made on an electrical motorcycle, comparing three models: a dynamic force based model, a power based model and a mass estimation model. The mass model estimated the mass with the help of a RLS algorithm and is a combination of the force based model and the power model. It investigates the possibility to further increase the accuracy of a range estimation algorithm by estimating the total mass of the vehicle over a driving session. On top of these models, two kinds of prediction methods for future consumption were evaluated: the average-past prediction and the home-intention prediction. Both models uses past data to predict the future, but the home-intention prediction is a suggested method to further improve the classic average-past method, where the beginning and end of the vehicle's driving sessions is assumed to be the same location. Tests were executed for the models on an electrical motorcycle provided by the company CAKE. A test equipment were put on the motorcycle, consisting of microprocessors and sensors, used for computation and collection of data. With this equipment, experiments were performed on three test routes with different conditions, comparing the models’ accuracies. The results showed that the Power Model, even with its lower complexity performed best overall, while the Force Model showed mixed results. Depending on the prediction method the Force Model performed either at the top or at the bottom. When the results were analyzed, this behavior seem to be the result of insufficient/faulty hardware which were essential for the average-past prediction to achieve proper results. The Force Model using home-intention prediction consistently performed better, as long as its prediction was correct. The Mass Model was executed offline and were then used to simulate the effect it could have had online. This showed promising result, suggesting improved accuracy if implemented online, but which in this thesis is left as a suggestion of improvement for future work.

Abstract [sv]

Den här studien utforskade implementationen av en algoritm för att estimatera kvarstående räckvidd för ett elektriskt fordon, som är en viktigt funktionalitet för att utvärdera ett fordons pålitlighet på vägen. Implementeringen gjordes på en elektrisk motorcykel på tre modeller: en kraftbaserad-, en effektbaserad- och en massestimeringsmodell. Massestimeringsmodellen estimerar fordonets massa med hjälp av en RLS algoritm och är en kombination av kraft- och effektmodellen. Den utforskar möjligheten att förbättra räckviddsestimeringen ytterligare genom att kunna estimera den totala vikten av fordonet under körningen. På dessa modeller så utvärderades två typer av prediktionsmetoder för att förutspå framtida energiförbrukning: genomsnittliga-datametoden, en metod som använder genomsnittlig data i dåtid, och hem-avsiktsmetoden, en metod som förutspår förarens avsikt att åka hem. Båda modellerna använder gammal data för att förutspå framtiden, men hem-avsiktsmetoden är en föreslagen metod för att ytterligare förbättra den klassiska genomsnittliga-passerade metoden, där början och slutet av körningen antas vara samma position. Test utfördes för modellerna på en elektrisk motorcykel från företaget CAKE. En testutrustning monterades på motorcykeln som består av mikroprocessorer och sensorer och användes för samla och bearbeta data. Med denna utrustning genomfördes experiment på tre olika rutter som hade olika förutsättningar där modellerna träffsäkerhet sedan jämfördes. Resultatet visade på att Effektmodellen, även då den har en lägre nivå av komplexitet, faktiskt presterade generellt sätt bäst, medans Kraftmodellen visade på blandat resultat. Beroende på prediktionsmetod som användes så presterade Kraftmoddel antingen i toppen eller botten. När resultatet analyserades så verkar detta beteende bero på otillräcklig/problematisk hårdvara som var avgörande för den genomsnittliga-passerade metoden. Kraftmodellen tillsammans med hem-avsiktsmetoden ökade prestandan konsekvent så länge som förutsägelsen var korrekt. Massmodellen utfördes offline och detta resultat användes sedan för att simulera massmodellens påverkan på estimering online. Detta visade på lovande resultat och visar på att ifall den metod kördes online så skulle pricksäkerheten kunna ökas, men är något som inte utförs i detta arbete utan lämnas som ett förslag på förbättring för framtida studier.

Place, publisher, year, edition, pages
2024. , p. 63
Series
TRITA-ITM-EX ; 2024:102
Keywords [en]
Remaining Range Estimation, Electrical Vehicle, RLS, Dynamic Force Model, Mass Estimation
Keywords [sv]
Räckviddsestimering, Elektriskt fordon, RLS, Dynamisk Kraftmodell, Massestimering
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-346625OAI: oai:DiVA.org:kth-346625DiVA, id: diva2:1859173
External cooperation
Cake
Subject / course
Mechatronics
Educational program
Degree of Master
Presentation
2024-05-17, 00:00
Supervisors
Examiners
Available from: 2024-05-21 Created: 2024-05-21 Last updated: 2024-05-21Bibliographically approved

Open Access in DiVA

fulltext(9875 kB)315 downloads
File information
File name FULLTEXT01.pdfFile size 9875 kBChecksum SHA-512
99461dba12953f87bbc1d1500699e28c0769b645e30074bca75ebba460fb4309f5486f38b2d5ddced0e4f8b29b5cf63b4c5e8af58c8cee84002573cbea72b761
Type fulltextMimetype application/pdf

By organisation
Mechatronics and Embedded Control Systems
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 315 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 429 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf