kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bridging the molecular and the continuous pictures of wetting dynamics on hydrophilic surfaces
KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics.ORCID iD: 0000-0002-2603-8440
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The term ‘wetting' is used by the scientific community when referring to the affinity and the dynamics of liquid films, drops or menisci over solid surfaces. Wetting processes can be observed in everyday life: a water rivulet sliding down a glass window, an oil droplet hovering over a no-stick pan, a drink meniscus traveling up a straw. Given the mundane occurrence of wetting, it may surprise to discover that there is no definitive description of how it occurs in the first place. In the past 50 years the community of fluid dynamics has come up with theoretical models and experiments aimed to demystify the dynamics of contact lines, i.e. the locations in space where liquid, vapor and solid phases meet. One key conclusion of this effort is that wetting dynamics is inherently a multiscale process, whereby flow at all scales is important.

The possibility of investigating the physics of contact lines is limited by the spatial resolution of experiments. In the last two decades a new investigation tool has joined the fray: direct numerical experiments, in the form of Molecular Dynamics simulations. These ‘virtual lenses' enable us to inspect wetting processes with a time and spatial resolution impossible to achieve with experiments. The goal of this thesis is to use Molecular Dynamics simulations to understand how wetting on hydrophilic silica-like surfaces can be modeled using the tools of continuous hydrodynamics, and conversely what effects emerge inherently from the discrete nature of the molecular world.

Molecular simulations sacrifice computational efficiency on the altar of detail and cannot directly reproduce wetting processes occurring at the scale of microns and upward. Accurate meso- and macroscopic models that can incorporate the effects of molecular physics are hence of great importance. The first half of this thesis illustrates the process of parametrizing Phase Field and Volume of Fluid methods with information provided by molecular simulations, as well as the assessment of their physical validity. Contact line dynamics over hydrophilic surfaces where liquid-solid slip is negligible represents a stress-test for continuous hydrodynamics.

The second half of the thesis focuses on molecular scale effects. The local layering and orientation of water molecules close to silica surfaces is found to affect the mobility of contact lines. In particular, molecular motion in the two surface-nearest liquid layers is responsible for a friction asymmetry, whereby hydrophilic surfaces result easier to wet rather than de-wet. The relation between liquid-solid friction liquid viscosity is also studied. It is determined that accurate correlations can be obtained only by accounting for molecular structure at the liquid/wall interface. These results corroborate the view of wetting as an inherently interfacial process and the idea of incorporating molecular-scale physics in its description.

Abstract [sv]

Termen ‘vätning' används i den akademiska världen när man hänvisar till affiniteten och dynamiken hos vätskefilmer, droppar eller menisker över fasta ytor. Vätningsprocesser kan observeras i vardagen: en vattendroppe som glider ner längs en glasruta, en oljedroppe som svävar över en non-stick-panna, en dryck menisk som färdas upp längs ett sugrör. Med tanke på den vardagliga förekomsten av vätning kan det överraska att upptäcka att det inte finns någon definitiv beskrivning av hur den uppstår till att börja med. Under de senaste 50 åren har det inom strömningsmekaniken tagits fram teoretiska modeller och experiment som syftar till att avmystifiera dynamiken hos kontaktlinjer, dvs. platser där vätske-, gas- och fasta faser möts. En viktig slutsats av detta arbete är att vätningsdynamik är till sin natur en flerskalig process, där flöde på alla skalor är betydelsefullt.

Möjligheten att undersöka fysiken hos kontaktlinjer begränsas av rumsupplösningen hos experiment. Under de senaste två årtiondena har ett nytt undersökningsverktyg tagits fram: direkta numeriska experiment, i form av molekylär dynamik-simuleringar. Dessa ‘virtuella linser' gör det möjligt för oss att inspektera vätningsprocesser med en tids- och rumsupplösning som är omöjlig att uppnå med experiment. Målet med denna avhandling är att använda molekylär dynamik-simuleringar för att förstå hur vätning på hydrofila kiseldioxid-liknande ytor kan modelleras med hjälp av kontinuerlig strömningsmekanik, och omvänt vilka effekter som uppstår till följd av den diskreta naturen hos den molekylära världen.

Molekylära simuleringar offrar beräkningsmässig effektivitet till förmån för  detaljrikedom och kan inte direkt återskapa vätningsprocesser som sker på mikrometerskala och uppåt. Tillförlitliga meso- och makroskopiska modeller som kan inkorporera effekterna av molekylär fysik är därför av stor vikt. Den första halvan av denna avhandling illustrerar processen att parametrisera Phase Field och Volume of Fluid metoder med information som tillhandahålls av molekylära simuleringar, samt en bedömning av deras fysiska validitet. Kontaktlinje-dynamik över hydrofila ytor där slip mellan fasta- och vätskefaser är försumbart representerar ett stresstest för kontinuerlig strömningsmekanik.

Den andra halvan av avhandlingen fokuserar på effekter på molekylär skala. Den lokala skiktningen och orienteringen av vattenmolekyler nära kiseldioxidytor påverkar rörligheten hos kontaktlinjer. Specifikt ger molekylär rörelse i de två ytnära vätskeskikten upphov till en friktionsasymmetri, där hydrofila ytor ger mindre motstånd mot en avancerande kontaktlinje än en kontaktlinje som drar tillbaka. Relationen mellan vätskeviskositet och friktion mellan fasta och vätskeytor studeras också. Det visas att noggranna korrelationer endast kan erhållas genom att beakta molekylär struktur vid gränsyta mellan vätska och vägg. Dessa resultat bekräftar synen på vätning som en inneboende gränssnittsprocess och behovet av att inkludera fysik på molekylär skala i dess beskrivning.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. , p. 197
Series
TRITA-SCI-FOU ; 2024:30
Keywords [en]
Wetting, Contact Lines, Molecular Dynamics, Fluid Dynamics, Multiscale Modeling, Molecular Kinetic Theory
National Category
Fluid Mechanics
Research subject
Physics
Identifiers
URN: urn:nbn:se:kth:diva-346683ISBN: 978-91-8040-952-0 (print)OAI: oai:DiVA.org:kth-346683DiVA, id: diva2:1859496
Public defence
2024-06-13, F3 (Flodis), Lindstedtsvägen 26 & 28, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 2024-05-23

Available from: 2024-05-23 Created: 2024-05-21 Last updated: 2025-02-09Bibliographically approved
List of papers
1. Cahn-Hilliard phase-field modeling captures the nanoscale hydrodynamics of contact lines on high-friction surfaces
Open this publication in new window or tab >>Cahn-Hilliard phase-field modeling captures the nanoscale hydrodynamics of contact lines on high-friction surfaces
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Incorporating molecular scale effects in the description of contact lines is difficult but necessary in order to accurately account for all sources of energy dissipation in wetting dynamics. This  holds particularly true in the cases where contact line friction determines wetting dynamics and hydrodynamics models struggle to find a regularisation due to the negligible slip of the wetting liquid over the solid surface. We perform Molecular Dynamics simulations of water/hexane biphasic systems, in the two-phase Couette flow configuration. Wetting occurs over a no-slip silica-like surface with variable wettability. The simulation results are reproduced by a Cahn-Hilliard Navier-Stokes model, which includes localised contact line slip and contact angle dynamics. The continuous equations are directly parametrized from Molecular Dynamics simulation results, under the assumption of the numerical sharp interface limit. The reconfiguration of the liquid/liquid interface and the flow structure are found to be in good quantitative agreement. In particular, interface bending due to viscous flow and contact line friction is fully reproduced. Navier slip is calibrated to ensure numerical stability. The viable combinations of Navier slip and Cahn-Hilliard mobility parameters that agree with Molecular Dynamics simulations in the sharp interface limit are reported and discussed. The results presented in this article indicate that Phase Field modeling can capture the effects of molecular processes on the mobility of contact lines and that an accurate determination of contact line friction is key to fully reproduce Molecular Dynamics simulations.

National Category
Fluid Mechanics
Identifiers
urn:nbn:se:kth:diva-346682 (URN)
Note

QC 20240522

Available from: 2024-05-21 Created: 2024-05-21 Last updated: 2025-02-09Bibliographically approved
2. Near-wall depletion and layering affect contact line friction of multicomponent liquids
Open this publication in new window or tab >>Near-wall depletion and layering affect contact line friction of multicomponent liquids
2024 (English)In: Physical Review Fluids, E-ISSN 2469-990X, Vol. 9, no 3, article id 034002Article in journal (Refereed) Published
Abstract [en]

The main causes of energy dissipation in micro- and nanoscale wetting are viscosity and liquid-solid friction localized in the three-phase contact line region. Theoretical models predict the contact line friction coefficient to correlate with the shear viscosity of the wetting fluid. Experiments conducted to investigate such correlation have not singled out a unique scaling law between the two coefficients. We perform molecular dynamics simulations of liquid water-glycerol droplets wetting silicalike surfaces, aimed to demystify the effect of viscosity on contact line friction. The viscosity of the fluid is tuned by changing the relative mass fraction of glycerol in the mixture and it is estimated both via equilibrium and nonequilibrium molecular dynamics simulations. Contact line friction is measured directly by inspecting the velocity of the moving contact line and the microscopic contact angle. It is found that the scaling between contact line friction and viscosity is sublinear, contrary to the prediction of molecular kinetic theory. The disagreement is explained by accounting for the depletion of glycerol in the near-wall region. A correction is proposed, based on multicomponent molecular kinetic theory and the definition of a rescaled interfacial friction coefficient.

Place, publisher, year, edition, pages
American Physical Society (APS), 2024
National Category
Other Mechanical Engineering Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-346072 (URN)10.1103/PhysRevFluids.9.034002 (DOI)001195765500002 ()2-s2.0-85188268773 (Scopus ID)
Note

QC 20240502

Available from: 2024-05-02 Created: 2024-05-02 Last updated: 2025-02-14Bibliographically approved
3. Asymmetry of wetting and de-wetting on high-friction surfaces originates from the same molecular physics
Open this publication in new window or tab >>Asymmetry of wetting and de-wetting on high-friction surfaces originates from the same molecular physics
2022 (English)In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 34, no 10, p. 102010-, article id 102010Article in journal (Refereed) Published
Abstract [en]

Motion of three-phase contact lines is one of the most relevant research topics of micro- and nano-fluidics. According to many hydrodynamic and molecular models, the dynamics of contact lines is assumed overdamped and dominated by localized liquid-solid friction, entailing the existence of a mobility relation between contact line speed and microscopic contact angle. We present and discuss a set of non-equilibrium atomistic molecular dynamics simulations of water nanodroplets spreading on or confined between silica-like walls, showing the existence of the aforementioned relation and its invariance under wetting modes ( "spontaneous " or "forced "). Upon changing the wettability of the walls, it has been noticed that more hydrophilic substrates are easier to wet rather than de-wet; we show how this asymmetry can be automatically captured by a contact line friction model that accounts for the molecular transport between liquid layers. A simple examination of the order and orientation of near-contact-line water molecules corroborates the physical foundation of the model. Furthermore, we present a way to utilize the framework of multicomponent molecular kinetic theory to analyze molecular contributions to the motion of contact lines. Finally, we propose an approach to discriminate between contact line friction models which overcomes the limitations of experimental resolution. This work constitutes a stepping stone toward demystifying wetting dynamics on high-friction hydrophilic substrates and underlines the relevance of contact line friction in modeling the motion of three-phase contact lines.

Place, publisher, year, edition, pages
AIP Publishing, 2022
National Category
Biophysics
Identifiers
urn:nbn:se:kth:diva-321632 (URN)10.1063/5.0121144 (DOI)000877985900006 ()2-s2.0-85141198405 (Scopus ID)
Note

QC 20221118

Available from: 2022-11-18 Created: 2022-11-18 Last updated: 2025-02-20Bibliographically approved
4. Nanoscale sheared droplet: volume-of-fluid, phase-field and no-slip molecular dynamics
Open this publication in new window or tab >>Nanoscale sheared droplet: volume-of-fluid, phase-field and no-slip molecular dynamics
Show others...
2022 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 940, article id A10Article in journal (Refereed) Published
Abstract [en]

The motion of the three-phase contact line between two immiscible fluids and a solid surface arises in a variety of wetting phenomena and technological applications. One challenge in continuum theory is the effective representation of molecular motion close to the contact line. Here, we characterize the molecular processes of the moving contact line to assess the accuracy of two different continuum two-phase models. Specifically, molecular dynamics simulations of a two-dimensional droplet between two moving plates are used to create reference data for different capillary numbers and contact angles. We use a simple-point-charge/extended water model. This model provides a very small slip and a more realistic representation of the molecular physics than Lennard-Jones models. The Cahn–Hilliard phase-field model and the volume-of-fluid model are calibrated against the drop displacement from molecular dynamics reference data. It is shown that the calibrated continuum models can accurately capture droplet displacement and droplet break-up for different capillary numbers and contact angles. However, we also observe differences between continuum and atomistic simulations in describing the transient and unsteady droplet behaviour, in particular, close to dynamical wetting transitions. The molecular dynamics of the sheared droplet provide insight into the line friction experienced by the advancing and receding contact lines. The presented results will serve as a stepping stone towards developing accurate continuum models for nanoscale hydrodynamics.

Place, publisher, year, edition, pages
Cambridge University Press (CUP), 2022
National Category
Fluid Mechanics
Identifiers
urn:nbn:se:kth:diva-311053 (URN)10.1017/jfm.2022.219 (DOI)000778572600001 ()2-s2.0-85129201165 (Scopus ID)
Funder
Swedish Research Council, VR-2014-5680
Note

QC 20220425

Available from: 2022-04-14 Created: 2022-04-14 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

summary(56899 kB)251 downloads
File information
File name SUMMARY01.pdfFile size 56899 kBChecksum SHA-512
6be65d1db28383270ac8ef74ef9bfbc53cece9c62cd9835948fc1c7cc4be150f17092c8dbba725d9f2aba022cc8839cf13d9152b86eb8b7aee05743e338ba6d9
Type summaryMimetype application/pdf

Authority records

Pellegrino, Michele

Search in DiVA

By author/editor
Pellegrino, Michele
By organisation
Science for Life Laboratory, SciLifeLabSeRC - Swedish e-Science Research CentreBiophysics
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 928 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf